
FileMaker® Server 14
Custom Web Publishing Guide

© 2004–2015 FileMaker, Inc. All Rights Reserved.
FileMaker, Inc.
5201 Patrick Henry Drive
Santa Clara, California 95054
FileMaker and FileMaker Go are trademarks of FileMaker, Inc. registered in the U.S. and other countries. The file folder
logo and FileMaker WebDirect are trademarks of FileMaker, Inc. All other trademarks are the property of their respective
owners.
FileMaker documentation is copyrighted. You are not authorized to make additional copies or distribute this
documentation without written permission from FileMaker. You may use this documentation solely with a valid licensed
copy of FileMaker software.
All persons, companies, email addresses, and URLs listed in the examples are purely fictitious and any resemblance to
existing persons, companies, email addresses, or URLs is purely coincidental. Credits are listed in the
Acknowledgements documents provided with this software. Mention of third-party products and URLs is for
informational purposes only and constitutes neither an endorsement nor a recommendation. FileMaker, Inc. assumes
no responsibility with regard to the performance of these products.
For more information, visit our website at http://www.filemaker.com.
Edition: 01

Contents

Preface 8
About this guide 8
Where to find FileMaker documentation 8

Chapter 1
Introducing Custom Web Publishing 9

About the Web Publishing Engine 10
How a Web Publishing Engine request is processed 10

Custom Web Publishing with XML 11
Custom Web Publishing with PHP 11
Comparing XML to PHP 11

Reasons to choose XML 11
Reasons to choose PHP 11

Chapter 2
Preparing databases for Custom Web Publishing 13

Enabling Custom Web Publishing in a database 13
Accessing a protected database 13
Protecting your published databases 14
Web server support for Internet media types (MIME) 15
About publishing the contents of container fields on the web 15

Container field objects embedded in a database 15
Container fields with stored file references 15
Container fields with externally stored data 16
Container fields and progressive download 17
How web users view container field data 18

FileMaker scripts and Custom Web Publishing 18
Script tips and considerations 18
Script behavior in Custom Web Publishing solutions 20
Script triggers and Custom Web Publishing solutions 20

Chapter 3
About Custom Web Publishing with XML 21

Creating dynamic websites with the Web Publishing Engine 21
Key features in Custom Web Publishing with XML 21
Web publishing requirements 22

What is required to publish a database using Custom Web Publishing 22
What web users need to access a Custom Web Publishing solution 22
Connecting to the Internet or an intranet 23

Where to go from here 23

4

Chapter 4
Accessing XML data with the Web Publishing Engine 24

Using Custom Web Publishing with XML 24
Differences between the Web Publishing Engine and FileMaker Pro XML Import/Export 24
How the Web Publishing Engine generates XML data from a request 25

General process for accessing XML data from the Web Publishing Engine 26
About the URL syntax for XML data and container objects 26

About the URL syntax for XML data 26
About the URL syntax for FileMaker container objects in XML solutions 27
About URL text encoding 28

Accessing XML data via the Web Publishing Engine 28
About namespaces for FileMaker XML 29
About FileMaker database error codes 29
Retrieving the document type definitions for the FileMaker grammars 29

Using the fmresultset grammar 30
Description of elements in the fmresultset grammar 30
Example of XML data in the fmresultset grammar 32

Using other FileMaker XML grammars 33
Description of elements in the FMPXMLRESULT grammar 33
Example of XML data in the FMPXMLRESULT grammar 34
Description of elements in the FMPXMLLAYOUT grammar 35
Example of XML data in the FMPXMLLAYOUT grammar 37

About UTF-8 encoded data 38
Using FileMaker query strings to request XML data 38
Switching layouts for an XML response 40
Understanding how an XML request is processed 40
Troubleshooting XML document access 41

Chapter 5
Valid names used in XML query strings 42

About the query commands and parameters 42
Guidelines for using query commands and parameters 42
Query command parsing 43
About the syntax for a fully qualified field name 44
Using query commands with portal fields 44
About the syntax for specifying a global field 46

Query command reference 46
–dbnames (Database names) query command 46
–delete (Delete record) query command 46
–dup (Duplicate record) query command 47
–edit (Edit record) query command 47
–find, –findall, or –findany (Find records) query commands 47
–findquery (Compound find) query command 48
–layoutnames (Layout names) query command 48
–new (New record) query command 48
–scriptnames (Script names) query command 49
–view (View layout information) query command 49

5

Query parameter reference 49
–db (Database name) query parameter 49
–delete.related (Portal records delete) query parameter 50
–field (Container field name) query parameter 50
fieldname (Non-container field name) query parameter 50
fieldname.op (Comparison operator) query parameter 51
–lay (Layout) query parameter 52
–lay.response (Switch layout for response) query parameter 52
–lop (Logical operator) query parameter 52
–max (Maximum records) query parameter 53
–modid (Modification ID) query parameter 53
–query (Compound find request) query parameter 53
–recid (Record ID) query parameter 55
–relatedsets.filter (Filter portal records) query parameter 55
–relatedsets.max (Limit portal records) query parameter 56
–script (Script) query parameter 56
–script.param (Pass parameter to Script) query parameter 56
–script.prefind (Script before Find) query parameter 57
–script.prefind.param (Pass parameter to Script before Find) query parameter 57
–script.presort (Script before Sort) query parameter 57
–script.presort.param (Pass parameter to Script before Sort) query parameter 58
–skip (Skip records) query parameter 58
–sortfield (Sort field) query parameter 58
–sortorder (Sort order) query parameter 59

Chapter 6
About Custom Web Publishing with PHP 60

Key features in Custom Web Publishing with PHP 60
Custom Web Publishing requirements 60

What is required to publish a database using Custom Web Publishing 60
What web users need to access a Custom Web Publishing solution 61
Connecting to the Internet or an intranet 61

Manually installing the FileMaker API for PHP 62
Where to go from here 63

Chapter 7
Overview of Custom Web Publishing with PHP 64

How the Web Publishing Engine works with PHP solutions 64
General steps for Custom Web Publishing with PHP 64

Chapter 8
Using the FileMaker API for PHP 66

Where to get additional information 66
FileMaker API for PHP Reference 66
FileMaker API for PHP support 67

Using the FileMaker class 67
FileMaker class objects 67
FileMaker command objects 67

6

Connecting to a FileMaker database 68
Working with records 68

Creating a record 68
Duplicating a record 69
Editing a record 69
Deleting a record 69

Running FileMaker scripts 70
Obtaining the list of available scripts 70
Running a FileMaker script 70
Running a script before executing a command 70
Running a script before sorting a result set 71
Running a script after the result set is generated 71
Script execution order 71

Working with FileMaker layouts 72
Using portals 72

Listing the portals defined on a specific layout 72
Obtaining portal names for a specific result object 72
Obtaining information about portals for a specific layout 73
Obtaining information for a specific portal 73
Obtaining the table name for a portal 73
Obtaining the portal records for a specific record 73
Creating a new record in a portal 73
Deleting a record from a portal 74

Using value lists 74
Obtaining the names of all value lists for a specific layout 74
Obtaining an array of all value lists for a specific layout 74
Obtaining the values for a named value list 74

Performing find requests 75
Using the Find All command 76
Using the Find Any command 76
Using the Find command 76
Using a Compound Find command 77
Processing the records in a result set 79
Filtering portal rows returned by find requests 80

Pre-validating commands, records, and fields 80
Pre-validating records in a command 81
Pre-validating records 82
Pre-validating fields 82
Processing the validation errors 82

Handling errors 84

7

Chapter 9
Staging, testing, and monitoring a site 85

Staging a Custom Web Publishing site 85
Testing a Custom Web Publishing site 86
Examples of stylesheets for testing XML output 87
Monitoring your site 87

Using the web server access and error logs 88
Using the Web Publishing Engine log 88
Using the Web Server Module error log 90
Using the Tomcat logs 90

Appendix A
Error codes for Custom Web Publishing 91

Error code numbers in XML format 91
Error code numbers for FileMaker databases 91

Index 92

Preface

About this guide
This guide assumes you are experienced with using FileMaker® Pro to create databases. You
should understand the basics of FileMaker Pro database design and the concepts of fields,
relationships, layouts, portals, and containers. For information about FileMaker Pro, see
FileMaker Pro Help.
This guide also assumes you are experienced with developing websites, especially with using
technologies like XML or PHP to integrate FileMaker data with websites and web applications.
This guide provides the following information about Custom Web Publishing with
FileMaker Server:
1 what is required to develop a Custom Web Publishing solution
1 how to publish your databases using XML
1 how to obtain XML data from databases hosted by FileMaker Server
1 how to publish your databases using PHP
1 how to use the FileMaker API for PHP to obtain data from databases hosted by

FileMaker Server
1 what web users need to access a Custom Web Publishing solution

Where to find FileMaker documentation
1 In FileMaker Server Admin Console, choose Help menu > FileMaker Server Product

Documentation.
1 Click the links on the FileMaker Server Admin Console Start Page.
1 To learn about, view, or download additional FileMaker documentation, visit

http://www.filemaker.com/documentation.

Online Help is accessible from FileMaker Server Admin Console. Choose Help menu >
FileMaker Server Help.

http://www.filemaker.com/documentation

Chapter 1
Introducing Custom Web Publishing
With FileMaker Server, you can publish your FileMaker database on the Internet or an intranet in
these ways.
FileMaker WebDirect: With FileMaker WebDirect, you can quickly and easily publish layouts from
a database on the web. You don’t need to install additional software—with compatible web
browser software and access to the Internet or an intranet, web users can connect to your
FileMaker WebDirect solution to view, edit, sort, or search records, if you give them access
privileges.
With FileMaker WebDirect, the host computer must be running FileMaker Server. The user
interface resembles the desktop FileMaker Pro application. The web pages and forms that the
web user interacts with are dependent on the layouts and views defined in the FileMaker Pro
database. For more information, see FileMaker WebDirect Guide.
Static publishing: If your data rarely changes, or if you don’t want users to have a live connection
to your database, you can use static publishing. With static publishing, you export data from a
FileMaker Pro database to create a web page that you can further customize with HTML. The web
page doesn’t change when information in your database changes, and users don’t connect to your
database. (With FileMaker WebDirect, the data is updated in the web browser whenever the data
is updated in the database.) For more information, see FileMaker Pro Help.
Custom Web Publishing: To integrate your FileMaker database with a custom website, use the
Custom Web Publishing technologies available with FileMaker Server. FileMaker Server, which
hosts the published databases, does not require FileMaker Pro to be installed or running for
Custom Web Publishing to be available.

With Custom Web Publishing, you can:
1 Integrate your database with another website
1 Determine how users interact with data
1 Control how data displays in web browsers

FileMaker Server provides two Custom Web Publishing technologies:
1 Custom Web Publishing with XML: Use XML data publishing to exchange FileMaker data with

other websites and applications. By using HTTP URL requests with FileMaker query
commands and parameters, you can query a database hosted by FileMaker Server, download
the resulting data in XML format, and use the resulting XML data in whatever way you want.

1 Custom Web Publishing with PHP: Use the FileMaker API for PHP, which provides an object-
oriented PHP interface to FileMaker Pro databases, to integrate your FileMaker data into a PHP
web application. Because you code the PHP web pages yourself, you have complete control
over the user interface and how the user interacts with the data.

Chapter 1 | Introducing Custom Web Publishing 10
About the Web Publishing Engine

To support FileMaker WebDirect and Custom Web Publishing, FileMaker Server uses a set of
software components called the FileMaker Server Web Publishing Engine. The Web Publishing
Engine handles interactions between a web user’s browser, your web server, and
FileMaker Server.
Custom Web Publishing with XML: Web users access your Custom Web Publishing solution by
clicking an HREF link or by entering a Uniform Resource Locator (URL) that specifies the web
server address and a FileMaker query string request. The Web Publishing Engine returns the XML
data specified in the query string request.
Custom Web Publishing with PHP: When a web user accesses your Custom Web Publishing
solution, PHP on FileMaker Server connects with the Web Publishing Engine and responds
through the FileMaker API for PHP.

How a Web Publishing Engine request is processed

1. A request is sent from a web browser or application to the web server.

2. The web server routes the request through FileMaker Web Server Module to the Web
Publishing Engine.

3. The Web Publishing Engine requests data from the database hosted by the Database Server.

4. The FileMaker Server sends the requested FileMaker data to the Web Publishing Engine.

5. The Web Publishing Engine converts the FileMaker data to respond to the request.
1 For PHP requests, the Web Publishing Engine responds to the API request.
1 For XML requests, the Web Publishing Engine sends XML data directly to the web server.

6. The web server sends the output to the requesting web browser or program.

Important Security is important when you publish data on the web. Review the security
guidelines in FileMaker Pro User’s Guide, available as a PDF file from
http://www.filemaker.com/documentation.

For information about getting a database ready for Custom Web Publishing, see chapter 2,
“Preparing databases for Custom Web Publishing.”

Web
Browser

Customers.fmp12

Database
Server

Products.fmp12

Using the FileMaker Server Web Publishing Engine for Custom Web Publishing

Web Server

Web Server Module

2 3

56 4

1

FM API and PHP code

Web Publishing
Engine

Web Publishing Core

http://www.filemaker.com/documentation

Chapter 1 | Introducing Custom Web Publishing 11
Custom Web Publishing with XML

FileMaker Custom Web Publishing with XML enables you to send query requests to a
FileMaker Pro database hosted by FileMaker Server and to display, modify, or manipulate the
resulting data. Using an HTTP request with the appropriate query commands and parameters, you
can retrieve FileMaker data as an XML document. You can then export the XML data to other
applications.
Custom Web Publishing with PHP

The FileMaker API for PHP provides an object-oriented PHP interface to FileMaker databases. The
FileMaker API for PHP enables both data and logic stored in a FileMaker Pro database to be accessed
and published on the web, or exported to other applications. The API also supports complex and
compound find commands for extracting and filtering data stored in FileMaker Pro databases.
Originally designed as a procedural programming language, PHP has been enhanced as an object-
oriented web development language. PHP provides programming language functionality for constructing
virtually any type of logic within a site page. For example, you can use conditional logic constructs to
control page generation, data routing, or workflow. PHP also provides for site administration and security.
Comparing XML to PHP

The following sections provide some guidelines for determining the best solution for your site.

Reasons to choose XML
1 FileMaker XML request parameter syntax is designed for database interaction, which simplifies

solution development.
1 XML is a W3C standard.
1 XML is a machine- and human-readable format that supports Unicode, enabling data to be

communicated in any written language.
1 XML is well-suited for presenting records, lists, and tree-structured data.
1 You can use FMPXMLRESULT for accessing XML data using Custom Web Publishing and for

exporting XML from FileMaker Pro databases.

Note For information about Custom Web Publishing with XML, see chapter 3, “About Custom
Web Publishing with XML.”

Reasons to choose PHP
1 PHP is a more powerful, object-oriented procedural scripting language, but is relatively easy to

learn. There are many resources available for training, development, and support.
1 The FileMaker API for PHP enables data and logic stored in a FileMaker Pro database to be

accessed and published on the web, or exported to other applications.
1 PHP lets you use conditional logic to control page construction or flow.
1 PHP provides programming language functionality for constructing many types of logic on a site

page.
1 PHP is one of the most popular web scripting languages.
1 PHP is an open source language, available at http://php.net.

http://php.net

Chapter 1 | Introducing Custom Web Publishing 12
1 PHP enables access to a wide variety of third-party components that you can integrate into your
solutions.

Note For information about Custom Web Publishing with PHP, see chapter 6, “About Custom
Web Publishing with PHP.”

Chapter 2
Preparing databases for Custom Web
Publishing
Before you can use Custom Web Publishing with a database, you must prepare the database and
protect it from unauthorized access.
Enabling Custom Web Publishing in a database

You must enable a Custom Web Publishing extended privilege in each database you want to
publish. If you don’t enable a Custom Web Publishing extended privilege in the database, web
users won’t be able to use Custom Web Publishing to access the database even if it is hosted by
FileMaker Server that is configured to support a Web Publishing Engine.

To enable Custom Web Publishing for a database:

1. In FileMaker Pro, open the database you want to publish using an account that has the Full
Access privilege set. Alternatively, you can open the database using an account that has the
Manage Extended Privileges access privileges.

2. Assign the Custom Web Publishing extended privilege that you want to use:
1 For Custom Web Publishing with XML, use fmxml
1 For Custom Web Publishing with PHP, use fmphp

3. Assign the privilege set(s) that include the Custom Web Publishing extended privilege to one
or more accounts, or to the Admin or Guest account.

Note When defining account names and passwords for Custom Web Publishing solutions, use
printable ASCII characters, for example a-z, A-Z, and 0-9. For more secure account names and
passwords, include punctuation characters such as “!” and “%,” but do not include colons. For
information on setting up accounts, see FileMaker Pro Help.
Accessing a protected database

Custom Web Publishing enables you to restrict access to your published databases through
database password protection, database encryption, and secure connections. When using a
Custom Web Publishing solution to access a database, web users may be prompted for their
account information. If the Guest account for the database is disabled or does not have a privilege
set enabled that includes a Custom Web Publishing extended privilege, the Web Publishing
Engine uses HTTP Basic Authentication to request authentication from web users. The web user’s
browser displays the HTTP Basic Authentication dialog box for the user to enter a user name and
password for an account that has a Custom Web Publishing extended privilege.

Chapter 2 | Preparing databases for Custom Web Publishing 14
The following list summarizes the process that occurs when a web user uses a Custom Web
Publishing solution to access a database:
1 If you have not assigned a password for an account, web users only specify the account name.
1 If the Guest account is disabled, then users will be prompted for account name and password

when they access the database. The account must have a Custom Web Publishing extended
privilege enabled.

1 If the Guest account is enabled and has a privilege set enabled that includes a Custom Web
Publishing extended privilege, all web users automatically open the database with the access
privileges assigned to the Guest account. If the Custom Web Publishing extended privilege is
assigned to the Guest account:
1 Web users are not prompted for an account name and password when opening a file.
1 All web users will automatically log in with the Guest account and assume the Guest account

privileges. You can let users change their login accounts from a web browser with the Re-
Login script step (for example, to switch from the Guest account to an account with more
privileges).

1 The default privilege set for Guest accounts provides “read-only” access. You can change
the default privileges, including Extended Privileges, for this account. See FileMaker Pro
Help.

Note By default, web users cannot modify their account password from a web browser. You can
build this feature into a database with the Change Password script step, which allows web users
to change their passwords from their browser. See FileMaker Pro Help.
Protecting your published databases

When using Custom Web Publishing, you can limit who can access your published databases.
1 Assign passwords to database accounts that are used for Custom Web Publishing.
1 Enable a Custom Web Publishing extended privilege only in the privilege sets for accounts that

you want to allow access to your published databases.
1 Disable the Custom Web Publishing extended privilege for a specific database by deselecting

the fmxml or fmphp extended privilege for all privilege sets in that database. See FileMaker Pro
Help.

1 Enable or disable Custom Web Publishing for all Custom Web Publishing solutions in the Web
Publishing Engine using FileMaker Server Admin Console. See FileMaker Server Getting
Started Guide and FileMaker Server Help.

1 Configure your web server to restrict the IP addresses that can access your databases via the
Web Publishing Engine. For example, you can specify that only web users from the IP address
192.168.100.101 can access your databases. For information on restricting IP addresses, see
the documentation for your web server.

Chapter 2 | Preparing databases for Custom Web Publishing 15
FileMaker Server supports encryption for data written to disk and for data transmitted to clients.
1 Encrypt your database by using the Database Encryption feature of FileMaker Pro Advanced.

Encryption protects the FileMaker database file and any temporary files written to disk. For
more information on encrypting a database, see FileMaker Server Getting Started Guide and
FileMaker Pro Help.
1 An encrypted database that is hosted on FileMaker Server is opened by using Admin

Console or the command line interface (CLI). As the FileMaker Server administrator, you
open the file with its database encryption password, so that FileMaker clients can use the
encrypted database.

1 Once the FileMaker encrypted database is opened with the encryption password by the
FileMaker Server administrator, FileMaker clients don’t need the encryption password to
access the encrypted database. For more information about opening an encrypted
database, see FileMaker Server Help.

1 Use Secure Sockets Layer (SSL) encryption for communication between the web server and
web browsers. SSL connections are accessed through an HTTPS connection.
FileMaker Server provides a standard SSL certificate signed by FileMaker, Inc. that does not
verify the server name. The FileMaker default certificate is intended only for test purposes. A
custom SSL certificate is required for production use. See FileMaker Server Getting Started
Guide.

For more information on securing your database, see FileMaker Pro User’s Guide, available as a
PDF file from http://www.filemaker.com/documentation.
Web server support for Internet media types (MIME)

Your web server determines the support for the current MIME (Multipurpose Internet Mail
Extensions) types registered for the Internet. The Web Publishing Engine does not change a web
server’s support for MIME. For more information, see the documentation for your web server.
About publishing the contents of container fields on the web

The contents of a container field can be embedded in the database, linked by reference using a
relative path, or stored externally.

Container field objects embedded in a database
If a container field stores the actual files in the FileMaker database, then you don’t need to do
anything with the container field contents if the database file is properly hosted and accessible on
FileMaker Server. See “About the URL syntax for FileMaker container objects in XML solutions”
on page 27.

Container fields with stored file references
If a container field stores a file reference, then you must follow these steps to publish the
referenced files using the Web Publishing Engine:

To publish container field objects that are stored as a file reference:

1. Store the container object files in the Web folder inside the FileMaker Pro folder.

http://www.filemaker.com/documentation

Chapter 2 | Preparing databases for Custom Web Publishing 16
2. In FileMaker Pro, insert the objects into the container field and select the Store only a
reference to the file option.

3. Copy or move the referenced object files in the Web folder to the same relative path location in
the root folder of the web server software.
1 For IIS (Windows):
[drive]:\Program Files\FileMaker\FileMaker Server\HTTPServer\conf
where [drive] is the drive on which the Web Publishing Engine component of your
FileMaker Server deployment resides.

1 For Apache (OS X): /Library/FileMaker Server/HTTPServer/htdocs

Note For container objects stored as file references, your web server must be configured to
support the MIME (Multipurpose Internet Mail Extensions) types for the kinds of files you want to
serve, such as movies. Your web server determines the support for the current MIME types
registered for the Internet. The Web Publishing Engine does not change a web server’s support
for MIME. For more information, see the documentation for your web server.

Container fields with externally stored data
If a container field stores objects externally — that is, if you selected Store container data
externally in the FileMaker Pro Options for Field dialog box — use FileMaker Pro to transfer
database files from the client file system to FileMaker Server. When you use FileMaker Pro to
upload a database, the externally stored container field data is uploaded to FileMaker Server as
part of the process. See FileMaker Pro Help for information on transferring the database files to
FileMaker Server.

When you manually upload a database that uses a container field with externally stored objects,
then you must follow these steps to publish the externally stored container objects using the Web
Publishing Engine.

To upload a database manually:

1. Place the database file in the proper location on the server. Place the FileMaker Pro database
files that you want FileMaker Server to open — or shortcuts (Windows) or aliases (OS X) to
those files — in the following folders:
1 Windows:
[drive]:\Program Files\FileMaker\FileMaker Server\Data\Databases\
where [drive] is the primary drive from which the system is started.

1 OS X: /Library/FileMaker Server/Data/Databases/
Or you can place the files in an optionally specified additional database folder.

2. In the folder where you placed the database, create a folder named RC_Data_FMS, if it
doesn’t already exist.

Chapter 2 | Preparing databases for Custom Web Publishing 17
3. In the RC_Data_FMS folder, create a folder with a name that matches the name of your
database. For example, if your database is named Customers, then create a folder named
Customers. Place the externally stored objects in the new folder you created.

Note When databases are hosted on FileMaker Server, there is no way for multiple databases
to share a common folder of container objects. The container objects for each database needs
to be in a folder identified by that database’s name.

4. For files that will be shared from OS X, change the files to belong to the fmsadmin group.

For more information about manually uploading databases, see FileMaker Pro Help.

Container fields and progressive download
The Web Publishing Engine supports progressive download of audio files (.mp3), video files (.mov,
.mp4, and .avi recommended), and PDF files for interactive containers. For example, a web user
may start viewing a movie even if the entire movie file has not yet downloaded. To allow for
progressive download, you may need to create the files using options that support streaming or
that optimize for display on the web. For example, create PDF files using the option to optimize
for web viewing.
When the FileMaker Server setting Use SSL for database connections is selected,
FileMaker Server uses secure connections to transmit data over HTTPS.
1 When the FileMaker Server setting Use SSL for progressive downloading is selected,

interactive container data is downloaded over HTTPS. The data is as secure as if the hosted
solution were a local database, since no temporary cache files are created and the data is
encrypted during transmission.

1 When the FileMaker Server setting Use SSL for progressive downloading is not selected,
interactive container data is downloaded over HTTP. FileMaker clients see the interactive
container data with minimal delay. FileMaker Server decrypts the container field data to a cache
folder on the server when a FileMaker client requests the data. FileMaker Server periodically
empties the cache folder, so the data may remain decrypted in the cache folder on the server
for up to two hours. The data is not cached locally on the client.

When the FileMaker Server setting Use SSL for database connections is not selected, the
connections that FileMaker Server uses to transmit data are not encrypted during transmission
and data is transmitted over HTTP.
1 FileMaker clients see the interactive container data with minimal delay.
1 FileMaker Server decrypts the container field data to a cache folder on the server when a

FileMaker Pro, FileMaker Go, or web client requests the data. The data may remain decrypted
in the cache folder on the server for two hours, until FileMaker Server periodically empties the
cache folder. The data is not cached locally on the client.

Database Server must be stopped and restarted when the Use SSL for database connections
and Use SSL for progressive downloading settings are changed in order for the new settings
to take effect.

Chapter 2 | Preparing databases for Custom Web Publishing 18
How web users view container field data
When you publish a database using the Web Publishing Engine, the following limitations apply to
container field objects:
1 Web users cannot modify or add to the contents of container fields. Web users cannot use

container fields to upload objects to the database.
1 For databases that use a container field with thumbnails enabled, the Web Publishing Engine

downloads the full file, not a thumbnail.
FileMaker scripts and Custom Web Publishing

The Manage Scripts feature in FileMaker Pro can automate frequently performed tasks and
combine several tasks. When used with Custom Web Publishing, FileMaker scripts allow web
users to perform more tasks or a series of tasks.
FileMaker supports many script steps in Custom Web Publishing. Web users can perform a variety
of automated tasks when you use scripts in a query string for a URL. To see script steps that
Custom Web Publishing supports, in the FileMaker Pro Script Workspace window, click the
Compatibility button and choose Custom Web Publishing. Script steps that are not dimmed are
supported for Custom Web Publishing. For information on creating scripts, see FileMaker Pro
Help.

Script tips and considerations
Although many script steps work identically on the web, there are several that work differently. See
“Script behavior in Custom Web Publishing solutions” on page 20. Before sharing your database,
evaluate all scripts that will be executed from a web browser. Be sure to log in with different user
accounts to make sure they work as expected for all clients. Check the Web Publishing Engine log
file (wpe.log) for any scripting-related errors; for more information, see “Using the Web Publishing
Engine log” on page 88.

Keep these tips and considerations in mind:
1 Use accounts and privileges to restrict the set of scripts that a web user can execute. Verify that

the scripts contain only web-compatible script steps, and only provide access to scripts that
should be used from a web browser.

1 Consider the side effects of scripts that execute a combination of steps that are controlled by
access privileges. For example, if a script includes a step to delete records, and a web user
does not log in with an account that allows record deletion, the script will not execute the Delete
Records script step. However, the script might continue to run, which could lead to unexpected
results.

1 In the Script Workspace window, grant full access privileges to a script to allow the script to
perform tasks that you would not grant individuals access to. For example, you can prevent
users from deleting records with their accounts and privileges, but still allow them to run a script
that would delete certain types of records under conditions predefined within a script.

1 To allow scripts to install plug-ins for Custom Web Publishing and FileMaker WebDirect
solutions, use FileMaker Server Admin Console to enable the setting Allow Install Plug-In File
script step to update plug-ins for web publishing. To prevent script from installing plug-ins
for web publishing solutions, clear this setting.

Chapter 2 | Preparing databases for Custom Web Publishing 19
1 If your scripts contain unknown steps—for example, steps that are obsolete or are not
recognized—running these script steps returns FileMaker Pro error 4 (“Command is unknown”).
Use the Allow User Abort script step to determine how subsequent steps are handled:
1 If the Allow User Abort script step option is enabled (on), unknown script steps stop the script

from continuing.
1 If Allow User Abort is disabled (off), unknown script steps are skipped and the script

continues to execute.
1 If Allow User Abort is not included, scripts are executed as if Allow User Abort were enabled,

so unknown script steps stop scripts.
1 If your scripts contain unsupported steps—for example, steps that are not web-

compatible—running these script steps returns FileMaker Pro error 3 (“Command is
unavailable”). These unsupported script steps are skipped and the script continues to execute.
In FileMaker 14, the Allow User Abort script step has no impact on the behavior of unsupported
script steps.

1 Some scripts that work with one step from a FileMaker Pro client may require an additional
Commit Record/Request script step to save the data to the host. Because web users don’t have
a direct connection to the host, they aren’t notified when data changes. For example, features
like conditional value lists aren’t as responsive for web users because the data must be saved
to the host before the effects are seen in the value list field.

1 Any script that modifies data should include the Commit Record/Request script step, because
data changes aren’t visible in the browser until the data is saved or “submitted” to the server.
This includes several script steps like Cut, Copy, and Paste. Many single-step actions should
be converted into scripts to include the Commit Record/Request step. When designing scripts
that will be executed from a web browser, include the Commit Record/Request step at the end
of a script to make sure all changes are saved.

1 To create conditional scripts based on the type of client, use the Get(ApplicationVersion)
function. If the value returned includes a “Web Publishing Engine” string, then you know that
the current user is accessing your database with Custom Web Publishing. For more information
on functions, see FileMaker Pro Help.

1 Open each script that web users might run and verify that the script will execute properly when
the database is hosted as a Custom Web Publishing solution. Check that the script uses only
script steps that are supported for Custom Web Publishing, as described above.

Chapter 2 | Preparing databases for Custom Web Publishing 20
Script behavior in Custom Web Publishing solutions
The following script steps function differently on the web than in FileMaker Pro. For information on
all script steps, see FileMaker Pro Help.
Script step Behavior in Custom Web Publishing solutions
Perform Script Scripts cannot perform in other files, unless the files are hosted on FileMaker Server and Custom Web

Publishing is enabled in the other files.

Exit Application Logs off web users, closes windows, but does not exit the web browser application.

Allow User Abort Determines how unknown script steps are handled. Enable to stop scripts from continuing, and disable
to skip unsupported steps. See “Script tips and considerations” on page 18 for more details.
Note: This script step has no impact on unsupported script steps. Unsupported script steps are skipped
and the script continues to execute.
Web users cannot abort Custom Web Publishing scripts.

Set Error Capture This is always enabled with Custom Web Publishing. Web users cannot abort Custom Web Publishing
scripts.

Pause/Resume script Although this script is supported in Custom Web Publishing, you should avoid using it. When a Pause
step is executed, the script pauses. Only a script containing the Resume script step can make it resume
execution. If the script remains in a paused state until the session times out, then the script will not be
completed.

Sort Records You must save a sort order with the Sort Records script step to execute in Custom Web Publishing.

Open URL This script step has no effect in a Custom Web Publishing solution.

Go to Field You cannot use Go to Field to make a particular field active in the web browser, but you can use this
script step in conjunction with other script steps to perform tasks. For example, you can go to a field,
copy the contents, go to another field and paste the value. To see the effect in the browser, be sure to
save the record with the Commit Record script step.

Commit
Record/Request

Submits the record to the database.
Script triggers and Custom Web Publishing solutions
In FileMaker Pro, both scripts and user actions (such as the user clicking a field) can activate script
triggers. But in Custom Web Publishing, only scripts can activate script triggers. For more
information on script triggers, see FileMaker Pro Help.

Note For FileMaker Pro 14, to specify that you want a script performed when a file is opened,
you need to use the OnFirstWindowOpen script trigger. Similarly, to specify that you want a script
performed when a file is closed, you need to use the OnLastWindowClose script trigger.

Chapter 3
About Custom Web Publishing with XML

Creating dynamic websites with the Web Publishing Engine

The Web Publishing Engine provides Custom Web Publishing for FileMaker Server using XML
data publishing. Custom Web Publishing provides several benefits:
1 Customization: You can determine how web users interact with FileMaker data, and how the

data displays in web browsers.
1 Data interchange: By using FileMaker XML, you can exchange FileMaker data with other

websites and applications.
1 Data integration: You can integrate FileMaker data into other websites, with other middleware,

and with custom applications. You can make the data look like it belongs to another website
instead of displaying an entire FileMaker layout in the web browser.

1 Security: The FileMaker Server administrator can individually enable or disable XML web
publishing for all databases hosted by the server. As the FileMaker database owner, you can
control web user access to or XML web publishing for each database.

1 Control and filtering of published data: You can control and filter the data and the type of
database information you want to publish, which prevents unauthorized use of the database.
You can also hide metadata, such as database and field names.

1 Based on an open standard: You have more access to tools, resources and skilled personnel
for Custom Web Publishing solutions. If you know standard XML, then you can start developing
solutions after learning a few unique details about Custom Web Publishing with XML, such as
the URL syntax and query parameters to use.

Custom Web Publishing with XML allows you to retrieve data from FileMaker databases, and
easily use the data in other output formats. By using an HTTP request with the appropriate query
commands and parameters, you can retrieve FileMaker data as an XML document. You can then
use the XML data in other applications. See “Accessing XML data via the Web Publishing Engine”
on page 28.
Key features in Custom Web Publishing with XML

FileMaker Server Custom Web Publishing with XML provides several important features:
1 Databases are hosted on FileMaker Server, and FileMaker Pro is not required to be running.
1 You can use server-side processing of the XML using JavaScript.
1 Like FileMaker Pro, access to data, layouts, and fields is based on the user account settings

defined in the database’s access privileges. The Web Publishing Engine also supports several
other security enhancements. See “Protecting your published databases” on page 14.

1 Web users can perform complex, multi-step scripts. FileMaker supports many script steps in
Custom Web Publishing. See “FileMaker scripts and Custom Web Publishing” on page 18.

Chapter 3 | About Custom Web Publishing with XML 22
1 You can pass a parameter value to a FileMaker script. For more information, see “–script.param
(Pass parameter to Script) query parameter” on page 56, “–script.prefind.param (Pass
parameter to Script before Find) query parameter” on page 57, and “–script.presort.param
(Pass parameter to Script before Sort) query parameter” on page 58.

1 The fmresultset XML grammar enables you to access fields by name and manipulate
relatedset (portal) data.

1 To access data in a database, you must specify a layout. See chapter 5, “Valid names used in
XML query strings,”
Web publishing requirements
What is required to publish a database using Custom Web Publishing
To publish databases using Custom Web Publishing with XML, you need:
1 a FileMaker Server deployment that includes:

1 a web server, either Microsoft IIS (Windows) or Apache (OS X)
1 the FileMaker Database Server, enabled for Custom Web Publishing
1 the Web Publishing Engine, installed and configured

1 one or more FileMaker Pro databases hosted by FileMaker Server
1 the IP address or domain name of the host running the web server
1 a web browser and access to the web server to develop and test your Custom Web Publishing

solution
For more information, see FileMaker Server Getting Started Guide.

What web users need to access a Custom Web Publishing solution
To access a Custom Web Publishing solution that uses XML, web users need:
1 a web browser
1 access to the Internet or an intranet and the web server
1 the IP address or domain name of the host running the web server
If the database is password-protected, web users must also enter a user name and password for
a database account.

Chapter 3 | About Custom Web Publishing with XML 23
Connecting to the Internet or an intranet
When you publish databases on the Internet or an intranet, the host computer must be running
FileMaker Server, and the databases you want to share must be hosted and available. In addition:
1 Publish your database on a computer with a full-time Internet or intranet connection. You can

publish databases without a full-time connection, but they are only available to web users when
your computer is connected to the Internet or an intranet.

1 The host computer for the web server that is part of the FileMaker Server deployment must
have a dedicated static (permanent) IP address or a domain name. If you connect to the
Internet with an Internet service provider (ISP), your IP address might be dynamically allocated
(it is different each time you connect). A dynamic IP address makes it more difficult for web
users to locate your databases. If you are not sure of the type of access available to you, consult
your ISP or network administrator.
Where to go from here

Here are some suggestions to get started developing Custom Web Publishing solutions:
1 If you haven’t already done so, use FileMaker Server Admin Console to enable Custom Web

Publishing. See FileMaker Server Help and FileMaker Server Getting Started Guide.
1 In FileMaker Pro, open each FileMaker database that you want to publish and make sure the

database has the appropriate extended privilege(s) enabled for Custom Web Publishing. See
“Enabling Custom Web Publishing in a database” on page 13.

1 To learn how to access data in FileMaker databases using XML, see “Accessing XML data via
the Web Publishing Engine” on page 28.

Chapter 4
Accessing XML data with the Web Publishing
Engine
You can obtain and update FileMaker data in Extensible Markup Language (XML) format by using
the Web Publishing Engine. In the same way that HTML has become the standard display
language for communication on the World Wide Web, XML has become the standard language
for structured data interchange. Many individuals, organizations, and businesses use XML to
transfer product information, transactions, inventory data, and other business data.
Using Custom Web Publishing with XML

If you know standard XML, you can start using the Web Publishing Engine after learning a few
unique details about Custom Web Publishing with XML, such as the URL syntax and query
parameters to use.
By using HTTP URL requests with FileMaker query commands and parameters, you can query a
database hosted by FileMaker Server and download the resulting data in XML format. For
example, you can query a database for all records in a certain postal code, and use the resulting
XML data in whatever way you want to.
For more information, search the FileMaker Knowledge Base available at
http://help.filemaker.com.

Note The Web Publishing Engine generates XML data that is well-formed and compliant with the
XML 1.0 specification. For details about the requirements for well-formed XML, see the XML
specification, which is available at http://www.w3.org.

Differences between the Web Publishing Engine and FileMaker Pro XML
Import/Export
The Web Publishing Engine and FileMaker Pro both enable you to use XML data with FileMaker
databases. There are, however, some important differences between the two methods:
1 For accessing XML data, the Web Publishing Engine supports the fmresultset,
FMPXMLRESULT, and FMPXMLLAYOUT grammars. For XML import, FileMaker Pro uses the
FMPXMLRESULT grammar, and for export, FileMaker Pro uses the FMPXMLRESULT grammar.
See “Accessing XML data via the Web Publishing Engine” on page 28.

1 To access XML data with the Web Publishing Engine, you use a Web Publishing Engine query
string in a URL. To import and export XML with FileMaker Pro, you use FileMaker Pro menu
commands or scripts.

1 The Web Publishing Engine is server-based and can be installed on the same or a different host
than FileMaker Server. FileMaker Pro XML import and export is desktop-based.

1 You can dynamically access XML data from FileMaker databases by using URL requests with
the Web Publishing Engine. The FileMaker Pro XML export feature generates a pre-specified
XML data file.

1 Working with XML data via the Web Publishing Engine is an interactive operation.
FileMaker Pro XML import and export is a batch operation.

http://help.filemaker.com
http://www.w3.org

Chapter 4 | Accessing XML data with the Web Publishing Engine 25
1 The Web Publishing Engine can access XML data from a FileMaker portal, but FileMaker Pro
cannot.

1 The Web Publishing Engine can access data in a container field, but FileMaker Pro cannot.
1 The Web Publishing Engine provides real-time access to FileMaker data via HTTP or HTTPS,

but FileMaker Pro cannot.

Note For information on using FileMaker Pro to import and export data in XML format, see
FileMaker Pro Help.

How the Web Publishing Engine generates XML data from a request
After a request for XML data is sent to the web server, the Web Publishing Engine queries the
FileMaker database and returns the data as an XML document.

Web
Browser

Web Server

Web Server Module

FileMaker Server Web
Publishing Engine

Web Publishing Core

Custom Web
Publishing Engine

(CWPE)

FileMaker
Database Server

FileMaker Server Web
Publishing Engine

Web Publishing Core
Web Server

Web Server Module

Customers.fmp12

Request for XML data is routed from web browser or program to FileMaker Database Server

Products.fmp12

Catalog.fmp12

1. HTTP or HTTPS
request for XML
data is sent from
web browser or
program to web
server.

2. Web server
routes request
to Web
Publishing Core.

3. Web Publishing Core
requests data from
database hosted by
FileMaker Database
Server.

XML data is routed back from FileMaker Database Server to web browser or program

6. Web server
sends output to
web browser or
program.

5. Web Publishing Core
converts data to XML and
sends it to web server.

4. FileMaker Database
Server sends requested
data to Web Publishing
Core.

Orders.fmp12

Web
Browser

Custom Web
Publishing Engine

(CWPE)

Chapter 4 | Accessing XML data with the Web Publishing Engine 26
General process for accessing XML data from the Web Publishing Engine

Here is an overview of the process for using the Web Publishing Engine to access XML data in a
FileMaker database:

1. In the FileMaker Server Admin Console, make sure XML Publishing is enabled. See
FileMaker Server Help.

2. In FileMaker Pro, open each FileMaker database that you’re publishing and make sure the
database has the fmxml extended privilege enabled for XML Custom Web Publishing. See
“Enabling Custom Web Publishing in a database” on page 13.
To access XML data in a portal, set the view for the database layout to View as Form or View
as List. If a user or script changes the view of the database layout to View as Table, only the
first related record (first row of the portal) is accessible as XML data.
The XML data is output in an order that corresponds to the order in which field objects were
added to the layout. If you want the XML data order to match the order in which fields appear
on the screen (top-to-bottom, left-to-right order), then select all fields, group them, and then
ungroup them. This procedure resets the layout order to match the screen order.

3. Send an HTTP or HTTPS request in the form of a URL that specifies the FileMaker XML
grammar, one query command, and one or more FileMaker query parameters to the Web
Publishing Engine through an HTML form, an HREF link, or a script in your program or web
page. You can also type the URL in a web browser.
For information on specifying the URL, see the next section, “About the URL syntax for XML
data and container objects.” For information on query commands and parameters, see “Using
FileMaker query strings to request XML data” on page 38, and chapter 5, “Valid names used in
XML query strings,”

4. The Web Publishing Engine uses the grammar you specified in the URL to generate XML data
containing the results of your request, such as a set of records from the database, and returns
it to your program or web browser.

5. The web browser, if it has an XML parser, displays the data, or the program uses the data in
the way you specified.
About the URL syntax for XML data and container objects

This section describes the URL syntax for using the Web Publishing Engine to access XML data
and container objects from FileMaker databases.

About the URL syntax for XML data
The URL syntax for using the Web Publishing Engine to access XML data from FileMaker
databases is:
<scheme>://<host>[:<port>]/fmi/xml/<xml_grammar>.xml[?<query string>]

where:
1 <scheme> can be the HTTP or HTTPS protocol.
1 <host> is the IP address or domain name of the host where the web server is installed.
1 <port> is optional and specifies the port that the web server is using. If no port is specified,

then the default port for the protocol is used (port 80 for HTTP, or port 443 for HTTPS).

Chapter 4 | Accessing XML data with the Web Publishing Engine 27
1 <xml_grammar> is the name of the FileMaker XML grammar. Possible values are
fmresultset, FMPXMLRESULT, or FMPXMLLAYOUT. See “Using the fmresultset grammar” on
page 30 and “Using other FileMaker XML grammars” on page 33.

1 <query string> is a combination of one query command and one or more query parameters
for FileMaker XML publishing. (The –dbnames command doesn’t require any parameters.) See
“Using FileMaker query strings to request XML data” on page 38, and chapter 5, “Valid names
used in XML query strings.”

Note The URL syntax, including the names of the query command and parameters, is case
sensitive except for portions of the query string. The majority of the URL is in lowercase, with the
exception of the two uppercase grammar names: FMPXMLRESULT and FMPXMLLAYOUT. For
information on the rules for case sensitivity of the query string, see “Guidelines for using query
commands and parameters” on page 42.

Here are two examples of URLs for accessing XML data via the Web Publishing Engine:
http://server.company.com/fmi/xml/fmresultset.xml?-db=products&-lay=sales
&-findall

http://192.168.123.101/fmi/xml/FMPXMLRESULT.xml?-db=products&-lay=sales
&-findall

About the URL syntax for FileMaker container objects in XML solutions
In a generated XML document for an XML solution, the syntax used to refer to a container object
is different for container fields that store the actual object in the database, as opposed to container
fields that store a reference to the object.

If a container field stores the actual object in the database

The container field’s <data> element uses the following relative URL syntax to refer to the object:
<data>/fmi/xml/cnt/data.<extension>?<query string></data>

where <extension> is the filename extension identifying the type of object, such as .jpg. The
filename extension sets the MIME type to allow the web browser to properly identify the container
data. For information on <query string>, see the previous section, “About the URL syntax for
XML data.”
For example:
<data>/fmi/xml/cnt/data.jpg?-db=products&-lay=sales&-field=product_image(1)
&-recid=2</data>

Note In the generated XML for a container field, the value for the –field query parameter is a
fully qualified field name. The number in the parentheses indicates the repetition number for the
container field, and is generated for both repeating and non-repeating fields. See “About the
syntax for a fully qualified field name” on page 44.

To retrieve the container data from the database, use the following syntax:
<scheme>://<host>[:<port>]/fmi/xml/cnt/data.<extension>?<query string>

For information about <scheme>, <host>, or <port>, see the previous section, “About the URL
syntax for XML data.”

Chapter 4 | Accessing XML data with the Web Publishing Engine 28
For example:
http://www.company.com/fmi/xml/cnt/data.jpg?-db=products&-lay=sales
&-field=product_image(1)&-recid=2

If a container field stores a file reference instead of an actual object

The container field’s <data> element contains a relative path that refers to the object. For
example:
<data>/images/logo.jpg</data>

Note The referenced container object must be stored in the FileMaker Pro Web folder when the
record is created or edited, and then copied or moved to a folder with the same relative location
in the root folder of the web server software. See “About publishing the contents of container fields
on the web” on page 15.

If a container field is empty

The container field’s <data> element is empty.

About URL text encoding
The URLs for accessing XML data and container objects must be encoded in UTF-8 (Unicode
Transformation 8 Bit) format. See “About UTF-8 encoded data” on page 38.
For example, to set the value of the “info” field to fiancée, you could use the following URL:
http://server.company.com/fmi/xml/fmresultset.xml?-db=members
&-lay=relationships&-recid=2&info= fianc%C3%A9e&-edit

In this example URL, %C3%A9 is the URL encoded UTF-8 representation of the é character.
For more information on URL text encoding, see the URL specification, which is available at
http://www.w3.org.
Accessing XML data via the Web Publishing Engine

To access XML data via the Web Publishing Engine, you use a URL that specifies the name of the
FileMaker grammar to use, one FileMaker query command, and one or more FileMaker query
parameters. The Web Publishing Engine generates XML data from your database that is
formatted by one of the following types of XML grammars:
1 fmresultset: This is the recommended grammar for the Web Publishing Engine for accessing

XML data. It is flexible and is optimized for easier field access by name and for easier
manipulation of relatedset (portal) data. This grammar is also more directly linked to
FileMaker terminology and features such as global storage options and identification of
summary and calculation fields. To facilitate web publishing, this grammar is designed to be
more verbose than the FMPXMLRESULT grammar. See “Using the fmresultset grammar” on
page 30.

1 FMPXMLRESULT and FMPXMLLAYOUT: You can also use the FMPXMLRESULT and
FMPXMLLAYOUT grammars with the Web Publishing Engine for accessing XML data. To use
one stylesheet for both XML export and Custom Web Publishing, you must use the
FMPXMLRESULT grammar. To access value lists and field display information in layouts, you
must use the FMPXMLLAYOUT grammar. See “Using other FileMaker XML grammars” on
page 33.

http://www.w3.org

Chapter 4 | Accessing XML data with the Web Publishing Engine 29
Depending on the grammar you specify in the URL request, the Web Publishing Engine will
generate an XML document using one of the grammars. Each XML document contains a default
XML namespace declaration for the grammar. See the next section, “About namespaces for
FileMaker XML.” Use one of these grammars in your document or web page to display and work
with FileMaker data in XML format.

Note XML data generated by the Web Publishing Engine is encoded using UTF-8 format
(Unicode Transformation Format 8). See “About UTF-8 encoded data” on page 38.

About namespaces for FileMaker XML
Unique XML namespaces help distinguish XML tags by the application they were designed for.
For example, if your XML document contains two <DATABASE> elements, one for FileMaker XML
data and another for Oracle XML data, the namespaces will identify the <DATABASE> element for
each.
The Web Publishing Engine generates a default namespace for each grammar.

About FileMaker database error codes
The Web Publishing Engine returns an error code in the error code elements at the beginning of
each XML document that represents the error, if any, in the execution of the most recently
executed query command. A value of zero (0) is returned for no error.

The error code element in the XML document indicates errors related to the database and query
strings. See appendix A, “Error codes for Custom Web Publishing.”

Retrieving the document type definitions for the FileMaker grammars
You can retrieve the document type definitions (DTDs) for the FileMaker grammars by using an
HTTP request.

For this grammar This default namespace is generated
fmresultset xmlns="http://www.filemaker.com/xml/fmresultset"

FMPXMLRESULT xmlns="http://www.filemaker.com/fmpxmlresult"

FMPXMLLAYOUT xmlns="http://www.filemaker.com/fmpxmllayout"

For this grammar This syntax is used
fmresultset <error code="0"></error>

FMPXMLRESULT <ERRORCODE>0</ERRORCODE>

FMPXMLLAYOUT <ERRORCODE>0</ERRORCODE>

For this grammar Use this HTTP request
fmresultset http://<host>[:<port]/fmi/xml/fmresultset.dtd

FMPXMLRESULT http://<host>[:<port]/fmi/xml/FMPXMLRESULT.dtd

FMPXMLLAYOUT http://<host>[:<port]/fmi/xml/FMPXMLLAYOUT.dtd

Chapter 4 | Accessing XML data with the Web Publishing Engine 30
Using the fmresultset grammar

The XML element names in this grammar use FileMaker terminology, and the storage of fields is
separated from the type of fields. The grammar also includes the ability to identify summary,
calculation, and global fields.
To use the fmresultset grammar, specify the following name of the fmresultset grammar in
the URL requesting the XML document from the Web Publishing Engine:
fmresultset.xml

For example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-findall

Note When specifying the fmresultset grammar, be sure to use lowercase.

The Web Publishing Engine will generate an XML document using the fmresultset grammar.
In the XML document, the Web Publishing Engine will reference the document type definition for
the fmresultset grammar in the <!DOCTYPE> instruction in the second line of the document,
immediately after the <?xml...?> instruction. The <!DOCTYPE> instruction specifies the URL for
downloading the DTD for the fmresultset grammar.

Description of elements in the fmresultset grammar
The fmresultset grammar consists primarily of the <datasource> element, the <metadata>
element, and the <resultset> element.

<datasource> element

In the fmresultset grammar, the <datasource> element contains the table, layout, date-
format, time-format, timestamp-format, total-count, and database attributes.
1 The date-format attribute of the <datasource> element specifies the format of dates in the

XML document:
MM/dd/yyyy

where:
1 MM is the 2-digit value for the month (01 through 12, where 01 is January and 12 is December)
1 dd is the 2-digit value for the day of the month (01 through 31)
1 yyyy is the 4-digit value for the year

1 The time-format attribute of the <datasource> element specifies the format of times in the
XML document:
HH:mm:ss

where:
1 HH is the 2-digit value for hours (00 through 23, for the 24-hour format)
1 mm is the 2-digit value for minutes (00 through 59)
1 ss is the 2-digit value for seconds (00 through 59)

1 The timestamp-format attribute of the <datasource> element combines the formats of date-
format and time-format into one timestamp:
MM/dd/yyyy HH:mm:ss

Chapter 4 | Accessing XML data with the Web Publishing Engine 31
<metadata> element

The <metadata> element of the fmresultset grammar contains one or more <field-
definition> and <relatedset-definition> elements, each containing attributes for one
of the fields of the result set.

The <field-definition> attributes specify:
1 whether the field is an auto-enter field (“yes” or “no”)
1 whether the field is a four-digit-year field (“yes” or “no)
1 whether it is a global field (“yes” or “no”)
1 the maximum number of repeating values (max-repeat attribute)
1 the maximum number of characters allowed (max-characters attribute)
1 whether it is a not-empty field (“yes” or “no”)
1 whether it is for numeric data only (“yes” or “no”)
1 result (“text”, “number”, “date”, “time”, “timestamp”, or “container”)
1 whether it is a time-of-day field (“yes” or “no”)
1 type (“normal”, “calculation”, or “summary”)
1 and the field name (fully qualified as necessary)

The <relatedset-definition> element represents a portal. Each related field in a portal is
represented by the <field-definition> element contained within the
<relatedset-definition> element. If there are multiple related fields in a portal, the field
definitions for the related fields are grouped within a single <relatedset-definition>
element.

<resultset> element

The <resultset> element contains the <record> elements returned as the result of a query
and an attribute for the total number of records found. Each <record> element contains the field
data for one record in the result set—including the mod-id and the record-id attributes for the
record, and the <data> element containing the data for one field in the record.
Each record in a portal is represented by a <record> element within the <relatedset>
element. The count attribute of the <relatedset> element specifies the number of records in
the portal, and the table attribute specifies the table associated with the portal.

Chapter 4 | Accessing XML data with the Web Publishing Engine 32
Example of XML data in the fmresultset grammar
The following is an example of XML data generated with the fmresultset grammar.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE fmresultset PUBLIC "-//FMI//DTD fmresultset//EN"
""http://localhost:80/fmi/xml/fmresultset.dtd">

 <fmresultset xmlns="http://www.filemaker.com/xml/fmresultset" version="1.0">

 <error code="0" />

 <product build="12/31/2015" name="FileMaker Web Publishing Engine"
version="0.0.0.0" />

 <datasource database="art" date-format="MM/dd/yyyy" layout="web3" table="art"
time-format="HH:mm:ss" timestamp-format="MM/dd/yyyy HH:mm:ss" total-count="12"
/>

 <metadata>

 <field-definition auto-enter="no" four-digit-year="no" global="no" max-
repeat="1" name="Title" not-empty="no" numeric-only="no" result="text" time-of-
day="no" type="normal" />

 <field-definition auto-enter="no" four-digit-year="no" global="no" max-
repeat="1" name="Artist" not-empty="no" numeric-only="no" result="text" time-
of-day="no" type="normal" />

 <relatedset-definition table="artlocations">

 <field-definition auto-enter="no" four-digit-year="no" global="no" max-
repeat="1" name="artlocations::Location" not-empty="no" numeric-only="no"
result="text" time-of-day="no" type="normal" />

 <field-definition auto-enter="no" four-digit-year="no" global="no" max-
repeat="1" name="artlocations::Date" not-empty="no" numeric-only="no"
result="date" time-of-day="no" type="normal" />

 </relatedset-definition>

 <field-definition auto-enter="no" four-digit-year="no" global="no" max-
repeat="1" name="Style" not-empty="no" numeric-only="no" result="text" time-of-
day="no" type="normal" />

 <field-definition auto-enter="no" four-digit-year="no" global="no" max-
repeat="1" name="length" not-empty="no" numeric-only="no" result="number" time-
of-day="no" type="calculation" />

 </metadata>

 <resultset count="1" fetch-size="1">

 <record mod-id="6" record-id="14">

 <field name="Title">

 <data>Spring in Giverny 3</data>

 </field>

 <field name="Artist">

 <data>Claude Monet</data>

 </field>

 <relatedset count="0" table="artlocations" />

 <field name="Style">

 <data />

 </field>

 <field name="length">

 <data>19</data>

Chapter 4 | Accessing XML data with the Web Publishing Engine 33
 </field>

 </record>

 </resultset>

 </fmresultset>
Using other FileMaker XML grammars

The other FileMaker XML grammars contain information about field types, value lists, and layouts.
FMPXMLRESULT is functionally equivalent to fmresultset. To access value lists and field display
information in layouts, you must use the FMPXMLLAYOUT grammar. The FMPXMLRESULT and
FMPXMLLAYOUT grammars are more compact for data interchange.
To use the FMPXMLRESULT grammar, specify the following grammar name in the URL requesting
the XML document from the Web Publishing Engine:
FMPXMLRESULT.xml

For example:
http://192.168.123.101/fmi/xml/FMPXMLRESULT.xml?-db=employees&-lay=family
&-findall

To use the FMPXMLLAYOUT grammar, specify the following grammar name with the –view query
command in the URL requesting the XML document from the Web Publishing Engine:
FMPXMLLAYOUT.xml

For example:
http://192.168.123.101/fmi/xml/FMPXMLLAYOUT.xml?-db=employees&-lay=family
&-view

Note When specifying the FMPXMLRESULT and FMPXMLLAYOUT grammars, be sure to enter the
grammar name in uppercase.

In the generated XML document, the Web Publishing Engine will reference the document type
definition for the grammar in the <!DOCTYPE> instruction in the second line of the document,
immediately after the <?xml...?> instruction. The <!DOCTYPE> instruction specifies the URL for
downloading the DTD for the grammar.

Description of elements in the FMPXMLRESULT grammar
In the FMPXMLRESULT grammar, the <DATABASE> element contains the NAME, RECORDS,
DATEFORMAT, LAYOUT, and TIMEFORMAT attributes.
The DATEFORMAT attribute of the <DATABASE> element specifies the format of dates in the XML
document. The TIMEFORMAT attribute of the <DATABASE> element specifies the format of times
in the XML document. The date and time formats for the FMPXMLRESULT and the fmresultset
grammars are the same. See “Description of elements in the fmresultset grammar” on page 30.
The <METADATA> element of the FMPXMLRESULT grammar contains one or more <FIELD>
elements, each containing information for one of the fields/columns of the result set—including the
name of the field as defined in the database, the field type, the Yes or No allowance for empty
fields (EMPTYOK attribute) and the maximum number of repeating values (MAXREPEAT
attribute). Valid values for field types are TEXT, NUMBER, DATE, TIME, TIMESTAMP, and
CONTAINER.

Chapter 4 | Accessing XML data with the Web Publishing Engine 34
The <RESULTSET> element contains all of the <ROW> elements returned as the result of a query
and an attribute for the total number of records found. Each <ROW> element contains the
field/column data for one row in the result set. This data includes the RECORDID and MODID for
the row (see “–modid (Modification ID) query parameter” on page 53), and the <COL> element.
The <COL> element contains the data for one field/column in the row where multiple <DATA>
elements represent one of the values in a repeating or portal field.

Example of XML data in the FMPXMLRESULT grammar
The following is an example of XML data generated with the FMPXMLRESULT grammar.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE FMPXMLRESULT PUBLIC "-//FMI//DTD FMPXMLRESULT//EN"
""http://localhost:80/fmi/xml/FMPXMLRESULT.dtd">

<FMPXMLRESULT xmlns="http://www.filemaker.com/fmpxmlresult">

 <ERRORCODE>0</ERRORCODE>

 <PRODUCT BUILD="12/31/2015" NAME="FileMaker Web Publishing Engine"
VERSION="0.0.0.0" />

 <DATABASE DATEFORMAT="MM/dd/yyyy" LAYOUT="web" NAME="art" RECORDS="12"
TIMEFORMAT="HH:mm:ss" />

 <METADATA>

 <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Title" TYPE="TEXT" />

 <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Artist" TYPE="TEXT" />

 <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Image" TYPE="CONTAINER" />

 </METADATA>

 <RESULTSET FOUND="1">

 <ROW MODID="6" RECORDID="15">

 <COL>

 <DATA>Spring in Giverny 4</DATA>

 </COL>

 <COL>

 <DATA>Claude Monet</DATA>

 </COL>

 <COL>

 <DATA>/fmi/xml/cnt/data.jpg?-db=art&-lay=web&-recid=15&-
field=Image(1)</DATA>

 </COL>

 </ROW>

 </RESULTSET>

</FMPXMLRESULT>

The order of the <COL> elements corresponds with the order of the <FIELD> elements in the
<METADATA> element—for example, where the “Title” and “Artist” fields are listed in the
<METADATA> element, “Village Market” and then “Camille Pissarro” are listed in the same order
in the <RESULTSET> and <ROW> elements.

Chapter 4 | Accessing XML data with the Web Publishing Engine 35
Description of elements in the FMPXMLLAYOUT grammar
In the FMPXMLLAYOUT grammar, the <LAYOUT> element contains the name of the layout, the
name of the database, and <FIELD> elements for each field found in the corresponding layout in
the database. Each <FIELD> element describes the style type of the field, and contains the
VALUELIST attribute for any associated value list of the field.
The <VALUELISTS> element contains one or more <VALUELIST> elements for each value list
found in the layout—each including the name of the value list and a <VALUE> element for each
value in the list.
Depending on the options selected in the Specify Fields for Value List dialog box in the
FileMaker database, the <VALUE> element contains a DISPLAY attribute that contains the value
in the first field only, the second field only, or both fields of a value list. For example, suppose the
first field in a value list stores the art style’s ID number (such as “100”), and the second field
displays the art style’s associated name (such as “Impressionism”). Here is a summary of the
contents of the DISPLAY attribute when the various combinations of options are selected in the
Specify Fields for Value List dialog box:
1 If Also display values from second field is not selected, the DISPLAY attribute contains the

value in the first field of a value list only. In the following XML data example, the DISPLAY
attribute contains the art style’s ID number only:
<VALUELISTS>

 <VALUELIST NAME="style">

 <VALUE DISPLAY="100">100</VALUE>

 <VALUE DISPLAY="101">101</VALUE>

 <VALUE DISPLAY="102">102</VALUE>

 </VALUELIST>

 </VALUELISTS>

1 If Also display values from second field and Show values only from second field are both
selected, the DISPLAY attribute contains the value in the second field only. In the following XML
data example, the DISPLAY attribute contains the art style’s name only:
<VALUELISTS>

 <VALUELIST NAME="style">

 <VALUE DISPLAY="Impressionism">100</VALUE>

 <VALUE DISPLAY="Cubism">101</VALUE>

 <VALUE DISPLAY="Abstract">102</VALUE>

 </VALUELIST>

 </VALUELISTS>

Chapter 4 | Accessing XML data with the Web Publishing Engine 36
1 If Also display values from second field is selected and Show values only from second
field is not selected, the DISPLAY attribute contains the values in both fields of a value list. In
the following XML data example, the DISPLAY attribute contains both the art style’s ID number
and the art style’s name:
<VALUELISTS>

 <VALUELIST NAME="style">

 <VALUE DISPLAY="100 Impressionism">100</VALUE>

 <VALUE DISPLAY="101 Cubism">101</VALUE>

 <VALUE DISPLAY="102 Abstract">102</VALUE>

 </VALUELIST>

 </VALUELISTS>

For date, time, and timestamp fields, data for value lists are formatted using the “fm” format for
that field type. The “fm” formats are MM/dd/yyyy for date, HH:mm:ss for time, and MM/dd/yyyy
HH:mm:ss for timestamp. For example, if a “birthdays” value list is used for a pop-up menu on a
“birthdate” field of a layout, and the “birthdate” field is of type date, then the values output for that
value list will all be in the “fm” date format.

Note If two fields with different field types on a layout share the same value list, the first field’s
type determines the format of the value list data.

Chapter 4 | Accessing XML data with the Web Publishing Engine 37
Example of XML data in the FMPXMLLAYOUT grammar
The following is an example of XML data generated with the FMPXMLLAYOUT grammar.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE FMPXMLLAYOUT PUBLIC "-//FMI//DTD FMPXMLLAYOUT//EN"
""http://localhost:80/fmi/xml/FMPXMLLAYOUT.dtd">

 <FMPXMLLAYOUT xmlns="http://www.filemaker.com/fmpxmllayout">

 <ERRORCODE>0</ERRORCODE>

 <PRODUCT BUILD="12/31/2015" NAME="FileMaker Web Publishing Engine"
VERSION="0.0.0.0" />

 <LAYOUT DATABASE="art" NAME="web2">

 <FIELD NAME="Title">

 <STYLE TYPE="EDITTEXT" VALUELIST="" />

 </FIELD>

 <FIELD NAME="Artist">

 <STYLE TYPE="EDITTEXT" VALUELIST="" />

 </FIELD>

 <FIELD NAME="Image">

 <STYLE TYPE="EDITTEXT" VALUELIST="" />

 </FIELD>

 <FIELD NAME="artlocations::Location">

 <STYLE TYPE="EDITTEXT" VALUELIST="" />

 </FIELD>

 <FIELD NAME="artlocations::Date">

 <STYLE TYPE="EDITTEXT" VALUELIST="" />

 </FIELD>

 <FIELD NAME="Style">

 <STYLE TYPE="POPUPMENU" VALUELIST="style" />

 </FIELD>

 </LAYOUT>

 <VALUELISTS>

 <VALUELIST NAME="style">

 <VALUE DISPLAY="Impressionism">100</VALUE>

 <VALUE DISPLAY="Cubism">101</VALUE>

 <VALUE DISPLAY="Abstract">102</VALUE>

 </VALUELIST>

 </VALUELISTS>

 </FMPXMLLAYOUT>

Chapter 4 | Accessing XML data with the Web Publishing Engine 38
About UTF-8 encoded data

All XML data generated by the Web Publishing Engine is encoded in UTF-8 (Unicode
Transformation 8 Bit) format. This format compresses data from the standard Unicode format of
16 bits to 8 bits for ASCII characters. XML parsers are required to support Unicode and UTF-8
encoding.
UTF-8 encoding includes direct representations of the values of 0-127 for the standard ASCII set
of characters used in English, and provides multibyte encodings for Unicode characters with
higher values.

Note Be sure to use a web browser or text editor program that supports UTF-8 files.

The UTF-8 encoding format includes the following features:
1 All ASCII characters are one-byte UTF-8 characters. A legal ASCII string is a legal UTF-8 string.
1 Any non-ASCII character (any character with the high-order bit set) is part of a multibyte

character.
1 The first byte of any UTF-8 character indicates the number of additional bytes in the character.
1 The first byte of a multibyte character is easily distinguished from the subsequent byte, which

makes it is easy to locate the start of a character from an arbitrary position in a data stream.
1 It is easy to convert between UTF-8 and Unicode.
1 The UTF-8 encoding is relatively compact. For text with a large percentage of ASCII characters,

it is more compact than Unicode. In the worst case, a UTF-8 string is only 50% larger than the
corresponding Unicode string.
Using FileMaker query strings to request XML data

To request XML data from a FileMaker database, you use the FileMaker query commands and
parameters in a query string. For example, you can use the –findall query command in the
following query string in a URL to request a list of all products in a FileMaker database named
“products”:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=products-lay=sales&-findall

A query string must contain only one query command, such as –new. Most query commands also
require various matching query parameters in the query string. For example, all query commands
except –dbnames require the –db parameter that specifies the database to query.
You can also use query commands and parameters in a URL.
This section contains a summary of the FileMaker query commands and parameters. For more
information about using them in a query string, see “Valid names used in XML query strings” on
page 42.
Use this query command name To execute this command
–dbnames Retrieve names of all hosted and web-shared databases.

–delete Delete record.

–dup Duplicate record.

–edit Edit record.

–find Find record(s).

–findall Find all records.

Chapter 4 | Accessing XML data with the Web Publishing Engine 39
–findany Find a random record.

–findquery Perform complex or compound find request.

–layoutnames Retrieve names of all available layouts for a hosted and web-shared database.

–new Add new record.

–scriptnames Retrieve names of all available scripts for a hosted and web-shared database.

–view Retrieves layout information from a database if the FMPXMLLAYOUT grammar is
specified. Retrieves <metadata> section of XML document and an empty recordset
if the fmresultset or FMPXMLRESULT grammar is specified.

Use these query parameter names With these query commands
–db (database name) Required with all query commands except –dbnames

–delete.related Optional with –edit

–field Required to specify a field in a URL for container requests. See “About the URL
syntax for FileMaker container objects in XML solutions” on page 27.

fieldname At least one field name is required with –edit. Optional with –find. See “fieldname
(Non-container field name) query parameter” on page 50.

fieldname.op (operator) Optional with –find

–lay (layout name) Required with all query commands, except –dbnames, –layoutnames, and
–scriptnames

–lay.response (switch layout for XML
response)

Optional with all query commands, except –dbnames, –layoutnames, and
–scriptnames

–lop (logical operator) Optional with –find

–max (maximum records) Optional with –find, –findall, and –findquery

–modid (modification ID) Optional with –edit

–query Required with -findquery compound find requests

–recid (record ID) Required with –edit, –delete, –dup. Optional with –find

–relatedsets.filter Optional with –find, –findall, –findany, –edit, –new, –dup, and
–findquery

–relatedsets.max Optional with –find, –edit, –new, –dup, and –findquery

–script (perform script) Optional with –find, –findall, –findany, –new, –edit, –delete, –dup,
–view, and –findquery

–script.param (pass a parameter value
to the script specified by –script)

Optional with –script and –findquery

–script.prefind (perform script before
–find, –findany, and –findall)

Optional with –find, –findany, –findall, and –findquery

–script.prefind.param (pass a
parameter value to the script specified by
–script.prefind)

Optional with –script.prefind and –findquery

–script.presort (perform script before
sort)

Optional with –find, –findall, and –findquery

–script.presort.param (pass a
parameter value to the script specified by
–script.presort)

Optional with –script.presort and –findquery

–skip (skip records) Optional with –find, –findall, and –findquery

Use this query command name To execute this command

Chapter 4 | Accessing XML data with the Web Publishing Engine 40
Switching layouts for an XML response

–sortfield.[1-9] (sort field) Optional with –find, –findall, and –findquery

–sortorder.[1-9] (sort order) Optional with –find, –findall

Use these query parameter names With these query commands
The –lay query parameter specifies the layout you want to use when requesting XML data. Often,
the same layout is appropriate for processing the data that results from the request. In some
cases, you might want to search for data using a layout which contains fields that, for security
reasons, don’t exist in another layout you want to use for displaying the results. (To do a search
for data in a field, the field must be placed on the layout you specify in the XML request.)
To specify a different layout for displaying an XML response than the layout used for processing
the XML request, you can use the optional –lay.response query parameter.
For example, the following request searches for values greater than 100,000 in the “Salary” field
on the “Budget” layout. The resulting data is displayed using the “ExecList” layout, which does not
include the “Salary” field.
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=Budget&Salary=100000&Salary.op=gt&-find&-lay.response=ExecList
Understanding how an XML request is processed

There are several query parameters that affect the processing of an XML request and the
generation of an XML document.

Here is the order in which FileMaker Server and the Web Publishing Engine process an XML
request:

1. Process the –lay query parameter.

2. Set the global field values specified in the query (the “.global=” portion of a URL).

3. Process the –script.prefind query parameter, if specified.

4. Process the query commands, such as –find or –new.

5. Process the –script.presort query parameter, if specified.

6. Sort the resulting data, if a sort was specified.

7. Process the –script query parameter, if specified.

8. Process the –lay.response query parameter to switch to a different layout, if this is specified.

9. Generate the XML document.

If one of the above steps generates an error code, the request processing stops; any steps that
follow are not executed. However, any prior steps in the request are still executed.
For example, consider a request that deletes the current record, sorts the records, and then
executes a script. If the –sortfield parameter specifies a non-existent field, the request deletes
the current record and returns error code 102 (“Field is missing”), but does not execute the script.

Chapter 4 | Accessing XML data with the Web Publishing Engine 41
Troubleshooting XML document access

If you have trouble accessing XML documents with the Web Publishing Engine, verify that:
1 The extended privileges in the database are set for XML Custom Web Publishing and assigned

to a user account. See “Enabling Custom Web Publishing in a database” on page 13.
1 The database is hosted on the Database Server component of the FileMaker Server

deployment, and is opened by FileMaker Server. See FileMaker Server Help.
1 The database account name and password you are using, if any, are correct.
1 The web server component of the FileMaker Server deployment is running.
1 The Web Publishing Engine component of the FileMaker Server deployment is running.
1 XML Publishing is enabled in the Web Publishing Engine component. See FileMaker Server

Help.

Chapter 5
Valid names used in XML query strings
This chapter describes the valid names of query commands and parameters you can use in an
XML query string when accessing FileMaker data using the Web Publishing Engine.
About the query commands and parameters

The following is a complete list of the query command names and query parameter names:

Important The –lay parameter for specifying a layout is required with all query commands
except –dbnames, –layoutnames, and –scriptnames.

Guidelines for using query commands and parameters
When using query commands and parameters in a query string, keep the following guidelines in
mind:
1 A query string must contain only one query command; no more and no less. For example, a

query string can contain –new to add a new record, but it can’t contain –new and –edit in the
same query string.

1 Most query commands require various matching query parameters in the query string. For
example, all query commands except –dbnames require the –db parameter that specifies the
database to query. See the table of required parameters in “Using FileMaker query strings to
request XML data” on page 38.

Query command names Query parameter names
–dbnames (See page 46.)
–delete (See page 46.)
–dup (See page 47.)
–edit (See page 47.)
–find, –findall, –findany (See page 47.)
–findquery (See page 48.)
–layoutnames (See page 48.)
–new (See page 48.)
–scriptnames (See page 49.)
–view (See page 49.)

–db (See page 49.)
–field (See page 50.)
fieldname (See page 50.)
fieldname.op (See page 51.)
–lay (See page 52.)
–lay.response (See page 52.)
–lop (See page 52.)
–max (See page 53.)
–modid (See page 53.)
–query (See page 53.)
–recid (See page 55.)
–relatedsets.filter (See page 55.)
–relatedsets.max (See page 56.)
–script (See page 56.)
–script.param (See page 56.)
–script.prefind (See page 57.)
–script.prefind.param (See page 57.)
–script.presort (See page 57.)
–script.presort.param (See page 58.)
–skip (See page 58.)
–sortfield.[1-9] (See page 58.)
–sortorder.[1-9] (See page 59.)

Chapter 5 | Valid names used in XML query strings 43
1 For query parameters and field names, specify the particular value you want to use, such as -
db=employees. For query commands, don’t specify an “=” sign or a value after the command
name, such as –findall.

1 The Web Publishing Engine converts all reserved words to lowercase, including query
commands, query parameters, and command values where specific values are expected (for
example: –lop=and, –lop=or, –sortorder=ascend, –sortorder=descend,
–max=all).

1 Database names, layout names, and field names used in query strings are case insensitive,
such as using –lay=mylayout to specify the layout name MyLayout.

1 It is not recommended to use periods or parentheses in field names. In some cases, field names
with periods may work, but field names with the following exceptions can never be used:
1 The period cannot be followed by a number. For example, myfield.9 is an invalid field

name.
1 The period cannot be followed by the text string op (the two letters “op”). For example,
myfield.op is an invalid field name.

1 The period cannot be followed by the text string global (the word “global”). For example,
myfield.global is an invalid field name.

Field names containing any of these exceptions cannot be accessed via XML using an HTTP
query. These constructs are reserved for record IDs, as described in the section, “About the
syntax for a fully qualified field name,” below.

1 For the –find command, the value of a field is case insensitive. For example, you can use
Field1=Blue or Field1=blue. For the –new and –edit commands, the case you use in
the value of a field is preserved and stored in the database exactly as you specify in the query
string. For example, LastName=Doe.

Query command parsing
The Web Publishing Engine parses query commands in the following order, and stops parsing
XML queries with the first error. If an error code is returned, the error code returned matches the
first error that is identified.

1. Does the query have a command and is the query command valid?
It is an error if the query is missing the command or uses an unknown command. For example:
-database

2. Does the query have two commands?
For example: -find&-edit

3. Does the query have an invalid value for a command or parameter?
For example: -lop=amd

4. Is the query missing the required database name parameter (–db parameter)?

5. Is the query missing the required layout name parameter (–lay parameter)?

Chapter 5 | Valid names used in XML query strings 44
6. Does the query have an invalid sort?

7. Does the query have invalid field parameters?

Note If a query contains valid but extraneous information, the query is processed without an
error. For example, if you specify the –lop parameter on a –delete command, the –lop
parameter is ignored because it does not cause the query to be invalid or ambiguous.

For information about specific error codes returned, see appendix A, “Error codes for Custom Web
Publishing.”

About the syntax for a fully qualified field name
A fully qualified field name identifies an exact instance of a field. Because fields with common
names can be based on different tables, you must use fully qualified names, in some cases, to
avoid errors.
The syntax for specifying a fully qualified field name is:

table-name::field-name(repetition-number).record-id

where:
1 table-name is the name of the table that contains the field. The table name is only required if

the field is not in the underlying table of the layout specified in the query string.
1 field-name(repetition-number) is the specific value in a repeating field, and is only

required for repeating fields. The repetition number starts counting at the numeral 1. For
example, field-name(2) refers to the second value in the repeating field. If you don’t specify
a repetition number for a repeating field, the first value in the repeating field is used. The
repetition-number is required for the –new and –edit query commands involving repeating
fields, but it is not required for the –find command.

1 record-id is the record ID, and is only required if you are using a query string to add or edit
records in portal fields. See the following sections “Adding records to a portal,” and “Editing
records in a portal.” The record-id is required for the –new and –edit query commands
involving portal fields, but it is not required for the –find command.

Note To be accessible, fields must be placed on the layout you specify in the query string.

Using query commands with portal fields
The following sections describe how query commands work with portal fields.

Adding records to a portal

To add a new record to a portal at the same time you add a parent record, use the –new query
command and do the following in query string for the request:
1 Use the fully qualified field name for the related portal field.
1 Specify 0 as the record ID after the name of the related portal field.
1 Specify at least one of the fields for the parent record before specifying the related portal field.
1 Specify the data for the match field (key field) in the parent record.

Chapter 5 | Valid names used in XML query strings 45
For example, the following URL adds a new parent Employee record for John Doe, and a new
related record for Jane in the portal at the same time. The name of the related table is Dependents,
and the name of the related field in the portal is Names. The match field, ID, stores an employee
ID number.
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=family&FirstName=John&LastName=Doe&ID=9756&Dependents::Names.0=Jane&-new

Note You can only add one related record to a portal per request.

Editing records in a portal

To edit one or more records in a portal, use the –edit command and a record ID to specify the
parent record that contains the portal records you want to edit. Specify the particular portal record
to edit by using its record ID in a fully qualified field name. You can determine a record ID from the
record ID attribute of the <record> element in the <relatedset> element in the XML data. See
“Using the fmresultset grammar” on page 30.
For example, the following URL edits a record in a portal where the parent record has the record
ID of 1001. Dependents is the name of the related table, Names is the name of the related field in
the portal, and the 2 in Names.2 is the record ID of a portal record.
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-recid=1001&Dependents::Names.2=Kevin&-edit

Here is an example of how to use one request to edit multiple portal records via the parent record:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-recid=1001&Dependents::Names.2=Kevin&Dependents::Names.5=Susan&-edit

You can also use the –edit command and specify 0 as the portal record ID to add a new related
record in the portal for an existing parent record. For example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-recid=1001&Dependents::Names.0=Timothy&-edit

Deleting portal records

To delete portal records, use the –delete.related parameter with the –edit command rather
than using the –delete command.
For example, the following URL deletes record “1001” from the table “employees”:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-recid=1001&-delete

But the following URL deletes a portal record with a record ID of “3” from the related table called
“Dependents”, with the parent record ID of “1001”.
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-recid=1001&-delete.related=Dependents.3&-edit

For more information, see “–delete.related (Portal records delete) query parameter” on page 50.

Chapter 5 | Valid names used in XML query strings 46
Querying portal fields

In a solution that has many related records, querying and sorting portal records can be time
consuming. To restrict the number of records and rows to display in a related set, use the
–relatedsets.filter and –relatedsets.max parameters with find requests. For more
information, see “–relatedsets.filter (Filter portal records) query parameter” on page 55 and
“–relatedsets.max (Limit portal records) query parameter” on page 56.

About the syntax for specifying a global field
The syntax for specifying a global field is:
table-name::field-name(repetition-number).global

where global identifies a field as using global storage. For information about table-name and
field-name(repetition-number), see “About the syntax for a fully qualified field name” on
page 44. For information on global fields, see FileMaker Pro Help.
You must use the .global syntax to identify a global field in a query string. The Web Publishing
Engine sets the parameter values for global fields before performing the query command or setting
any other parameter values in the query string. For direct XML requests, the global values expire
immediately after the request is made.
If you don’t use the .global syntax to identify a global field in a query string, the Web Publishing
Engine evaluates the global field along with the remainder of the query string without setting the
global field value first.
For example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=departments
&Country.global=USA&-recid=1&-edit
Query command reference

This section contains information about the query commands available for XML requests.

–dbnames (Database names) query command
Retrieves the names of all databases that are hosted by FileMaker Server and enabled for Custom
Web Publishing with XML.
Required query parameters: (none)
Example:
To retrieve the database names:
http://192.168.123.101/fmi/xml/fmresultset.xml?-dbnames

–delete (Delete record) query command
Deletes the record as specified by –recid parameter
Required query parameters: –db, –lay, –recid
Optional query parameter: –script
Example:
To delete a record:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-recid=4&-delete

Chapter 5 | Valid names used in XML query strings 47
–dup (Duplicate record) query command
Duplicates the record specified by –recid
Required query parameters: –db, –lay, –recid
Optional query parameter: –script
Example:
To duplicate the specified record:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-recid=14&-dup

–edit (Edit record) query command
Updates the record specified by the –recid parameter, populating the fields with the contents of
any field name/value pairs. The –recid parameter indicates which record should be edited.
Required query parameters: –db, –lay, –recid, one or more field name(s)
Optional query parameter: –modid, –script, field name

Note For information on editing records in a portal, see “Editing records in a portal” on page 45.

Example:
To edit a record:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-recid=13&Country=USA&-edit

–find, –findall, or –findany (Find records) query commands
Submits a search request using defined criteria
Required query parameters: –db, –lay
Optional query parameters: –recid, –lop, –op, –max, –skip, –sortorder, –sortfield,
–script, –script.prefind, –script.presort, field name
Examples:
To find a record by field name:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=family&Country=USA&-find

Note Specifying a field name multiple times in a single request is not supported;
FileMaker Server parses all of the values, but uses only the last value parsed.

To find a record by record ID:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-recid=427&-find

To find all records in the database, use –findall:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-findall

Chapter 5 | Valid names used in XML query strings 48
To find a random record, use –findany:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-findany

–findquery (Compound find) query command
Submits a search request using multiple find records and omit records requests.
Required query parameters: –db, –lay, –query
Optional query parameters: –max, –skip, –sortorder, –sortfield, –script,
–script.prefind, –script.presort
Example:
Find records for cats or dogs that are not named “Fluffy.”
http://host/fmi/xml/fmresultset.xml?-db=vetclinic&-lay=animals
&-query=(q1);(q2);!(q3)&-q1=typeofanimal&-q1.value=Cat&-q2=typeofanimal
&-q2.value=Dog&-q3=name&-q3.value=Fluffy&-findquery

Using the -findquery command for compound finds

A –findquery statement consists of four parts, in the following order:
1 The –query parameter
1 The query request declarations, consisting of the query identifier declarations and request

operations.
1 The search field and value definitions for each query identifier.

1 Define query identifiers. A query identifier is the letter "q" followed by a number. For example:
-q1

1 Define query identifier values with the parameter. For example: -q1.value=fieldvalue
1 Define query identifier operators by including it as part of the fieldvalue expression. For

example, to use an asterisk as a “begins with” operator: -q1.value=fieldvalue*
1 The –findquery command, at the end of the complete statement.
For more information on using the –query parameter, see “–query (Compound find request)
query parameter” on page 53.

–layoutnames (Layout names) query command
Retrieves the names of all available layouts for a specified database that is hosted by
FileMaker Server and enabled for Custom Web Publishing with XML.
Required query parameters: –db
Example:
To retrieve the names of available layouts:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-layoutnames

–new (New record) query command
Creates a new record and populates that record with the contents of any field name/value pairs.
Required query parameters: –db, –lay

Chapter 5 | Valid names used in XML query strings 49
Optional query parameter: one or more field name(s), –script

Note For information on including new data for a portal, see “Adding records to a portal” on
page 44.

Example:
To add a new record:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&Country=Australia&-new

–scriptnames (Script names) query command
Retrieves the names of all available scripts for a specified database that is hosted by
FileMaker Server and enabled for Custom Web Publishing with XML.
Required query parameters: –db
Example:
To retrieve the names of all scripts:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-scriptnames

–view (View layout information) query command
If the FMPXMLLAYOUT grammar is specified, retrieves layout information from a database and
displays it in the FMPXMLLAYOUT grammar. If a data grammar (fmresultset or
FMPXMLRESULT) is specified, retrieves the metadata section of XML document and an empty
recordset.
Required query parameters: –db, –lay
Optional query parameter: –script
Examples:
To retrieve layout information:
http://192.168.123.101/fmi/xml/FMPXMLLAYOUT.xml?-db=employees
&-lay=departments&-view

To retrieve metadata information:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-view
Query parameter reference

This section contains information about the query parameters available for XML requests.

–db (Database name) query parameter
Specifies the database that the query command is applied to
Value is: Name of the database, not including the filename extension if any

Note When specifying the name of the database for the –db parameter in query strings, do not
include a filename extension. The actual database filename can optionally include an extension,
but extensions are not allowed as a value for the –db parameter.

Chapter 5 | Valid names used in XML query strings 50
Required with: All query commands except –dbnames
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-findall

–delete.related (Portal records delete) query parameter
Deletes a record from a portal field.
Optional with: –edit query command
Requires: A related table name and a record id
Example:
The following example deletes a portal record with a record ID of “20” from the related table called
“jobtable”, with a parent record ID of “7”.
http://host/fmi/xml/fmresultset.xml?-db=career&-lay=applications&-recid=7
&-delete.related=jobtable.20&-edit

–field (Container field name) query parameter
Specifies the name of a container field.
Required with: request for data in a container field
See “About the URL syntax for XML data and container objects” on page 26.

fieldname (Non-container field name) query parameter
Field names are used to control criteria for the –find query command, or to modify the contents
of a record. When you need to specify a value for a non-container field for a query command or
parameter, use the field name without the hyphen (-) character as the name portion of the
name/value pair.
Name is: Name of the field in the FileMaker database. If the field is not in the underlying table of
the layout specified in the query string, the field name must be fully qualified.
It is not recommended to use periods or parentheses in field names. In some cases, field names
with periods may work, but field names with the following exceptions can never be used:

1 The period cannot be followed by a number. For example, myfield.9 is an invalid field
name.

1 The period cannot be followed by the text string op (the two letters “op”). For example,
myfield.op is an invalid field name.

1 The period cannot be followed by the text string global (the word “global”). For example,
myfield.global is an invalid field name.

Field names containing any of these exceptions cannot be accessed via XML using an HTTP
query. These constructs are reserved for record IDs, as described in the section, “About the syntax
for a fully qualified field name” on page 44.
Value is: For the –new and –edit query commands, specify the value you want to store in the
field in the current record. For the –find query commands, specify the value you want to search
for in the field. When you specify the value for a date, time, or timestamp field, specify the value
using the “fm” format for that field type. The “fm” formats are MM/dd/yyyy for date, HH:mm:ss for
time, and MM/dd/yyyy HH:mm:ss for timestamp.
Required with: –edit query command

Chapter 5 | Valid names used in XML query strings 51
Optional with: –new and –find query commands
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-op=eq&FirstName=Sam&-max=1&-find

Note Specifying a field name multiple times in a single request is not supported;
FileMaker Server parses all of the values, but uses only the last value parsed.

fieldname.op (Comparison operator) query parameter
Specifies the comparison operator to apply to the field name that precedes the operator.
Comparison operators are used with the –find query command.
Value is: The operator you want to use. Valid operators are as follows:

Optional with: –find query command
Requires: A field name and a value
The syntax for specifying a comparison operator is:
table-name::field-name=value&table-name::field-name.op=op-symbol

where:
1 table-name is the table that contains the field and is only required if the field is not in the

source table of the layout specified in the query string.
1 op-symbol is one of the keywords in the preceding table, such as cn.

Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&name=Tim&name.op=cn&-find

Note The bw keyword does not work with date, time, or timestamp strings, or with the current
date (//) find operator.

Keyword FileMaker Pro equivalent operator
eq =word

cn *word*

bw word*

ew *word

gt > word

gte >= word

lt < word

lte <= word

neq omit, word

Chapter 5 | Valid names used in XML query strings 52
You can use any FileMaker Pro find operator by including it as part of the search criteria instead
of specifying the fieldname.op operator keyword. For example, to find a range of values using the
range (...) find operator, do not specify any operator keyword. Instead, use the characters “...”
between the range values in the search criteria.
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&
-lay=departments&IDnum=915...925&-find

For more information on the operators you can use to find text, see FileMaker Pro Help.

–lay (Layout) query parameter
Specifies the database layout you want to use
Value is: Name of the layout
Required with: All query commands except –dbnames, –layoutnames, and –scriptnames.
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-view

–lay.response (Switch layout for response) query parameter
Specifies that FileMaker Server should use the layout specified by the –lay parameter when
processing a request, and switch to the layout specified by the –lay.response parameter when
processing the XML response.
If you don’t include the –lay.response parameter, FileMaker Server uses the layout specified
by the –lay parameter when processing both the request and the response.
You can use the –lay.response parameter for XML requests.
Value is: Name of the layout
Optional with: All query commands except –dbnames, –layoutnames, and –scriptnames.
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=Budget&Salary=100000&Salary.op=gt&-find&-lay.response=ExecList

–lop (Logical operator) query parameter
Specifies how the find criteria in the –find query command are combined as either an “and” or
an “or” search
Value is: and or or
If the –lop query parameter is not included, then the –find query command uses the “and” value.
Optional with: –find query command

Note Not supported by -findquery query command.

Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&Last+Name=Smith&Birthdate=2/5/1972&-lop=and&-find

Chapter 5 | Valid names used in XML query strings 53
–max (Maximum records) query parameter
Specifies the maximum number of records you want returned
Value is: A number, or use the value all to return all records. If –max is not specified, all records
are returned.
Optional with: –find, –findall, and -findquery query commands

Note The –max query parameter does not affect the values returned for portal records. To limit
the number of rows returned for portal records, see “–relatedsets.max (Limit portal records) query
parameter” on page 56.

Examples:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-max=10&-findall

http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-max=all&-findall

–modid (Modification ID) query parameter
The modification ID is an incremental counter that specifies the current version of a record. By
specifying a modification ID when you use an –edit query command, you can make sure that
you are editing the current version of a record. If the modification ID value you specify does not
match the current modification ID value in the database, the –edit query command is not allowed
and an error code is returned.
Value is: A modification ID, which is a unique identifier for the current version of a record in a
FileMaker database.
Optional with: –edit query command
Requires: –recid parameter
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-recid=22&-modid=6&last_name=Jones&-edit

–query (Compound find request) query parameter
Specifies the query names and search criteria for a compound find request. See “–findquery
(Compound find) query command” on page 48.
Value is: A query expression.
Required with: –findquery query command
The syntax for a compound find request is:
-query=<request-declarations><request-definitions>&-findquery

Where:
<request-declarations> is two or more request declarations.
1 Each request declaration is composed of one or more query identifiers separated by commas,

and enclosed in parentheses. A query identifier is the letter “q” followed by a number. For
example: q1

Chapter 5 | Valid names used in XML query strings 54
1 Enclosed in parentheses, the multiple queries act as logical AND searches that narrow the
found set. For example, (q1, q2) returns records that match q1 and q2.

Note It is not recommended to use the same fields for multiple q variables in the same “and”
search criteria.

1 As with FileMaker Pro, each request can be either a find request or an omit request. A find
request adds the matching records to the found set; an omit request removes the matching
records from the found set. The default is a find request. For an omit request, put an
exclamation point (!) in front of the opening parenthesis.
For example: (q1);!(q2)
In this example, q1 is a find request; q2 is an omit request because it is preceded by an
exclamation point.

1 Requests are separated by semicolons. Multiple find requests act as logical OR searches that
broaden the found set. For example, (q1);(q2) returns records that match q1 or q2. Omit
requests do not act as logical OR searches because omit requests remove records from the
found set.

1 Requests are executed in the order specified; the found set includes the results of the entire
compound find request.

<request-definitions> is a request definition for each request declaration. Each request
definition consists of a search field and value definition. A minus (-) sign starts the request
definition.

Syntax:
-<query-id>=<fieldname>&-<query-id>.value=<value>

For example:
-q1=typeofanimal&-q1.value=Cat

-q2=name&-q2.value=Fluffy

Example:
Find records of gray cats that are not named “Fluffy.”
http://host/fmi/xml/fmresultset.xml?-db=petclinic&-lay=Patients
&-query=(q1, q2);!(q3)&-q1=typeofanimal&-q1.value=Cat&-q2=color
&-q2.value=Gray&-q3=name&-q3.value=Fluffy&-findquery

Chapter 5 | Valid names used in XML query strings 55
–recid (Record ID) query parameter
Specifies the record you want processed. Used mainly by the –edit, and –delete query
commands. Used by the –view command to retrieve related value list data in the
FMPXMLLAYOUT grammar.
Value is: A record ID, which is a unique specifier to a record in a FileMaker database
Required with: –edit, –delete, and –dup query commands
Optional with: –find query and –view commands
Example 1:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-recid=22&-delete

Example 2:
http://localhost/fmi/xml/FMPXMLLAYOUT.xml?-db=test&-lay=empty&-view&-recid=9

–relatedsets.filter (Filter portal records) query parameter
Specifies whether to filter the portal records to be returned in the results for this query.
Value is: layout or none
1 If –relatedsets.filter is set to layout, then the Initial row setting specified in the

FileMaker Pro Portal Setup dialog box is respected.
1 If the Allow vertical scrolling setting is enabled in the Portal Setup dialog box, then use the
–relatedsets.max option to specify the maximum number of records to be returned. See
“–relatedsets.max (Limit portal records) query parameter” below.

1 If the Allow vertical scrolling setting is disabled or the –relatedsets.max option is not
used, then the Number of rows setting in the Portal Setup dialog box determines the
number of portal records to be returned.

1 The default value is none if this parameter is not specified. If –relatedsets.filter is set
to none, then the Web Publishing Engine returns all records in the portal. The values for Initial
row and Number of rows specified in the Portal Setup dialog box are ignored.

Notes:

1 The –relatedsets.filter parameter has no impact on how portal records are sorted in
XML queries. The sort specified in FileMaker Pro is respected whether the
–relatedsets.filter parameter value is layout or none.

1 The Filter portal records setting in the Portal Setup dialog box is not supported for XML
queries. Any calculation specified for the Filter portal records setting is ignored.

Optional with: –find, –edit, –new, –dup, and –findquery.
Examples:
http://localhost/fmi/xml/fmresultset.xml?-db=FMPHP_Sample&-lay=English
&-relatedsets.filter=none&-findany
http://localhost/fmi/xml/fmresultset.xml?-db=FMPHP_Sample
&-lay=English&relatedsets.filter=layout&-relatedsets.max=all&-findany
http://localhost/fmi/xml/fmresultset.xml?-db=FMPHP_Sample&-lay=English
&-relatedsets.filter=layout&-relatedsets.max=10&-findany

Chapter 5 | Valid names used in XML query strings 56
–relatedsets.max (Limit portal records) query parameter
Specifies the maximum number of portal records to return in the results for this query.
Value is: an integer, or all.
1 The –relatedsets.max parameter is respected only if the Allow vertical scrolling setting

is enabled in the FileMaker Pro Portal Setup dialog box and the –relatedsets.filter
parameter is layout.
1 If the –relatedsets.max parameter specifies an integer, then the Web Publishing Engine

returns that number of portal records starting with the initial row.
1 If the –relatedsets.max parameter specifies all, then the Web Publishing Engine

returns all portal records.

Note For information on filtering portal records, see “–relatedsets.filter (Filter portal records)
query parameter” above.

Optional with: –find, –edit, –new, –dup, and –findquery.
Examples:
http://localhost/fmi/xml/fmresultset.xml?-db=FMPHP_Sample
&-lay=English&relatedsets.filter=layout&-relatedsets.max=all&-findany
http://localhost/fmi/xml/fmresultset.xml?-db=FMPHP_Sample&-lay=English
&-relatedsets.filter=layout&-relatedsets.max=10&-findany

–script (Script) query parameter
Specifies the FileMaker script to run after the query command and sorting are executed. See
“Understanding how an XML request is processed” on page 40.
Value is: Script name
Optional with: all query commands except –dbnames, –layoutnames, and –scriptnames
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-script=myscript&-findall

–script.param (Pass parameter to Script) query parameter
Passes a parameter to the FileMaker script specified by –script
Value is: A single text parameter.
1 To pass in multiple parameters, you can create a string delimiting the parameters and have your

script parse out the individual parameters. For example, pass “param1|param2|param3” as
a list with the “|” character URL-encoded as this: param1%7Cparam2%7Cparam3

1 To treat the text parameter as a value that is not text, your script can convert the text value. For
example, to convert the text value to a number, your script could include the following:
GetAsNumber(Get(ScriptParam))

1 If your query contains –script.param without –script, then –script.param is ignored.
1 If your query contains more than one –script.param, then the Web Publishing Engine uses

the last value that it parses.
Optional with: –script

Chapter 5 | Valid names used in XML query strings 57
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-script=myscript&-script.param=Smith%7CChatterjee%7CSu
&-findall

–script.prefind (Script before Find) query parameter
Specifies the FileMaker script to run before finding and sorting of records (if specified) during
processing of the –find query command
Value is: Script name
Optional with: all query commands except –dbnames, –layoutnames, and –scriptnames
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-script.prefind=myscript&-findall

–script.prefind.param (Pass parameter to Script before Find) query parameter
Passes a parameter to the FileMaker script specified by –script.prefind
Value is: A single text parameter.
1 To pass in multiple parameters, you can create a string delimiting the parameters and have your

script parse out the individual parameters. For example, pass “param1|param2|param3” as
a list with the “|” character URL-encoded as this: param1%7Cparam2%7Cparam3

1 To treat the text parameter as a value that is not text, your script can convert the text value. For
example, to convert the text value to a number, your script could include the following:
GetAsNumber(Get(ScriptParam))

1 If your query contains –script.prefind.param without –script.prefind, then
–script.prefind.param is ignored.

1 If your query contains more than one –script.prefind.param, then the Web Publishing
Engine uses the last value that it parses.

Optional with: –script.prefind
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-script.prefind=myscript&-script.prefind.param=payroll
&-findall

–script.presort (Script before Sort) query parameter
Specifies the FileMaker script to run after finding records (if specified) and before sorting records
during processing of the –find query command
Optional with: all query commands except –dbnames, –layoutnames, and –scriptnames
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-script.presort=myscript&-sortfield.1=dept
&-sortfield.2=rating&-findall

Chapter 5 | Valid names used in XML query strings 58
–script.presort.param (Pass parameter to Script before Sort) query parameter
Passes a parameter to the FileMaker script specified by –script.presort
Value is: A single text parameter.
1 To pass in multiple parameters, you can create a string delimiting the parameters and have your

script parse out the individual parameters. For example, pass “param1|param2|param3” as
a list with the “|” character URL-encoded as this: param1%7Cparam2%7Cparam3

1 To treat the text parameter as a value that is not text, your script can convert the text value. For
example, to convert the text value to a number, your script could include the following:
GetAsNumber(Get(ScriptParam))

1 If your query contains –script.presort.param without –script.presort, then
–script.presort.param is ignored.

1 If your query contains more than one –script.presort.param, then the Web Publishing
Engine uses the last value that it parses.

Optional with: –script.presort
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-script.presort=myscript&-script.presort.param=18%7C65
&-sortfield.1=dept&-sortfield.2=rating&-findall

–skip (Skip records) query parameter
Specifies how many records to skip in the found set
Value is: A number. If the value is greater than the number of records in the found set, then no
record is displayed. The default value is 0.
Optional with: –find query command
In the following example, the first 10 records in the found set are skipped and records 11 through
15 are returned.
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-skip=10&-max=5&-findall

–sortfield (Sort field) query parameter
Specifies the field to use for sorting
Value is: field name
Optional with: –find or –findall query commands
The –sortfield query parameter can been used multiple times to perform multiple field sorts.
The syntax for specifying the precedence of the sort fields is:
-sortfield.precedence-number=fully-qualified-field-name

where the precedence-number in the –sortfield.precedence-number query parameter
is a number that specifies the precedence to use for multiple sort fields. The value for
precedence-number:
1 must start from 1.
1 must increment sequentially.
1 must not be greater than 9.

Chapter 5 | Valid names used in XML query strings 59
In the following example, the “dept” field is sorted first, and then the “rating” field is sorted. Both
fields are sorted in ascending order because the –sortorder query parameter is not specified.
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=performance&-sortfield.1=dept&-sortfield.2=rating&-findall

–sortorder (Sort order) query parameter
Indicates the direction of a sort
Value is: The sort order. Valid sort orders are as follows, where <value-list-name> is a value
list name such as Custom:

Optional with: –find or –findall query commands
Requires: –sortfield query parameter
The –sortorder query parameter can been used with the –sortfield query parameter to
specify the sort order of multiple sort fields. The syntax for specifying the sort order of a sort field is:
-sortorder.precedence-number=sort-method

where:
1 precedence-number in the –sortorder.precedence-number parameter is a number

from 1 to 9 that specifies the –sortfield query parameter that the –sortorder query
parameter applies to.

1 sort-method is one of the keywords in the preceding table to specify the sort order, such as
ascend

In the following example, the sort order of the highest precedence sort field (dept) is ascend, and
the sort order of the second highest precedence sort field (rating) is descend. The precedence-
number 2 in -sortorder.2 specifies that the query parameter -sortorder.2=descend
applies to the -sortfield.2=rating query parameter.
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=performance&-sortfield.1=dept&-sortorder.1=ascend&-sortfield.2=rating
&-sortorder.2=descend&-findall

Note If a –sortorder query parameter is not specified for a sort field, the default ascending sort
is used.

Keyword FileMaker Pro Equivalent Operator
ascend Sort a to z, -10 to 10

descend Sort z to a, 10 to -10

<value-list-name> Sort using the specified value list associated with the field on the layout

Chapter 6
About Custom Web Publishing with PHP
Custom Web Publishing with PHP lets you use the PHP scripting language to integrate data from
FileMaker databases with your customized web page layouts. Custom Web Publishing with PHP
provides the FileMaker API for PHP, which is a PHP class created by FileMaker that accesses
databases hosted by FileMaker Server. This PHP class connects to the FileMaker Server Web
Publishing Engine and makes data available to your web server’s PHP engine.
Key features in Custom Web Publishing with PHP

1 Create web applications that use the Open Source PHP scripting language. Use the

FileMaker Server supported version of PHP, or use your own version of PHP. (If you decide to
use your own version of PHP, see “Manually installing the FileMaker API for PHP” on page 62.)

1 Host databases on FileMaker Server. FileMaker Pro is not required for Custom Web Publishing
because FileMaker Server hosts the databases.

1 Write PHP code that can create, delete, edit, and duplicate records in a hosted FileMaker
database. Your code can perform field and record validation before committing changes back
to the hosted database.

1 Write PHP code that accesses layouts, portals, value lists, and related fields. Like
FileMaker Pro, access to data, layouts, and fields is based on the user account settings defined
in the database’s access privileges. The Web Publishing Engine also supports several other
security enhancements. See “Protecting your published databases” on page 14.

1 Write PHP code that executes complex, multi-step scripts. FileMaker supports many script
steps in Custom Web Publishing. See “FileMaker scripts and Custom Web Publishing” on
page 18.

1 Write PHP code that performs complex find requests.
Custom Web Publishing requirements

This section explains what is required to develop a Custom Web Publishing solution using PHP,
what web users need in order to access a Custom Web Publishing solution, and what impact
hosting a web publishing solution may have on your server.

What is required to publish a database using Custom Web Publishing
To publish databases using Custom Web Publishing with PHP, you need:
1 a FileMaker Server deployment, which includes three components:

1 a web server, either Microsoft IIS (Windows) or Apache (OS X). The FileMaker Web Server
Module is installed on the web server.

1 the FileMaker Web Publishing Engine
1 the FileMaker Database Server

Chapter 6 | About Custom Web Publishing with PHP 61
1 PHP installed on the web server. FileMaker Server can install the supported version of PHP, or
you can use your own version.
1 For the minimum required version of PHP, see http://www.filemaker.com/r/fms-specs.
1 For information about PHP, see http://php.net.
1 The version of PHP installed on the web server must support cURL (client URL library)

functions. For information about cURL, see http://php.net/curl.

Important When you install the FileMaker Server supported version of PHP, it does not show
up in the OS X Server Admin tool; it is not supposed to be listed. If you use the OS X Server
Admin tool to turn on PHP, you disable the FileMaker Server supported version of PHP, and
enable your own version of PHP.

1 one or more FileMaker Pro databases hosted by FileMaker Server.
1 the IP address or domain name of the host running the web server
1 a web browser and access to the web server to develop and test your Custom Web Publishing

solution
For more information, see FileMaker Server Getting Started Guide.

What web users need to access a Custom Web Publishing solution
To access a Custom Web Publishing solution that uses PHP, web users need:
1 a web browser
1 access to the Internet or an intranet and the web server
1 the IP address or domain name of the host running the web server
If the database is password-protected, web users must also enter a user name and password for
a database account.

Connecting to the Internet or an intranet
When you publish databases on the Internet or an intranet, the host computer must be running
FileMaker Server, and the databases you want to share must be hosted and available. In addition:
1 Publish your database on a computer with a full-time Internet or intranet connection. You can

publish databases without a full-time connection, but they are only available to web users when
your computer is connected to the Internet or an intranet.

1 The host computer for the web server that is part of the FileMaker Server deployment must
have a dedicated static (permanent) IP address or a domain name. If you connect to the
Internet with an Internet service provider (ISP), your IP address might be dynamically allocated
(it is different each time you connect). A dynamic IP address makes it more difficult for web
users to locate your databases. If you are not sure of the type of access available to you, consult
your ISP or network administrator.

http://php.net
http://php.net/curl

Chapter 6 | About Custom Web Publishing with PHP 62
Manually installing the FileMaker API for PHP

When you install FileMaker Server, you are given the option to install the FileMaker supported
version of PHP. If you already have a PHP engine installed and configured and you want to add
only the FileMaker API for PHP, then manually install the FileMaker API for PHP class to make it
available to your PHP scripts.
If you did not install the FileMaker supported version of PHP, be sure to do the following
configuration tasks on your version of the PHP engine:
1 Enable the cURL module in php.ini.
1 Specify the location of the FileMaker API for PHP in the include_path variable in php.ini.
1 If you are accessing databases that contain dates and times, install the pear date package. For

more information, see: http://pear.php.net/package/date/

Note For the minimum required version of PHP, see http://www.filemaker.com/r/fms-specs. For
best results, use the appropriate version of PHP.

To make the FileMaker API for PHP accessible to your PHP scripts

When you installed FileMaker Server, the FileMaker API for PHP package was included as a .zip
file in the following location:
1 For IIS (Windows):
[drive]:\Program Files\FileMaker\FileMaker Server\Web
Publishing\FM_API_for_PHP_Standalone.zip
where [drive] is the drive on which the web server component of your FileMaker Server
deployment resides.

1 For Apache (OS X):
/Library/FileMaker Server/Web Publishing/FM_API_for_PHP_Standalone.zip

The FM_API_for_PHP_Standalone.zip file contains a file called FileMaker.php and a folder called
FileMaker. Unzip the file and copy the FileMaker.php file and the FileMaker folder to either of these
locations:
1 the folder where your PHP scripts reside.

1 For IIS (Windows) through HTTP or HTTPS:
[drive]:\Program Files\FileMaker\FileMaker Server\HTTPServer\Conf
where [drive] is the drive on which the Web Publishing Engine component of your
FileMaker Server deployment resides.

1 For Apache (OS X) through HTTP:
/Library/FileMaker Server/HTTPServer/htdocs

1 For Apache (OS X) through HTTPS:
/Library/FileMaker Server/HTTPServer/htdocs/httpsRoot

1 one of the include_path directories in your PHP installation. The default location for OS X is
/usr/lib/php.

http://pear.php.net/package/date
http://www.filemaker.com/r/fms-specs

Chapter 6 | About Custom Web Publishing with PHP 63
Where to go from here

Here are some suggestions to get started developing Custom Web Publishing solutions:
1 Use FileMaker Server Admin Console to enable Custom Web Publishing. See

FileMaker Server Help and FileMaker Server Getting Started Guide.
1 In FileMaker Pro, open each FileMaker database that you want to publish and make sure the

database has the appropriate extended privilege(s) enabled for Custom Web Publishing. See
“Enabling Custom Web Publishing in a database” on page 13.

1 To learn how to access data in FileMaker databases using the FileMaker API for PHP, see
chapter 8, “Using the FileMaker API for PHP.”

Chapter 7
Overview of Custom Web Publishing with PHP
The FileMaker API for PHP helps you integrate data from FileMaker Pro databases into PHP
solutions. This chapter describes how PHP works with the FileMaker Server Custom Web
Publishing Engine. For more detailed information about the FileMaker API for PHP, see chapter 8,
“Using the FileMaker API for PHP.”
How the Web Publishing Engine works with PHP solutions

FileMaker Server is composed of three components: a web server, the Web Publishing Engine,
and the Database Server. (These components may be deployed on one machine or two machines.
See FileMaker Server Getting Started Guide for information.) FileMaker Server hosts the PHP
solution when you place the PHP files on the web server where the PHP engine is installed.
1 When a web user opens a PHP solution, the web server routes the request to the PHP engine,

which processes the PHP code.
1 If the PHP code contains calls to the FileMaker API for PHP, those calls are interpreted and sent

as requests to the Web Publishing Engine.
1 The Web Publishing Engine requests data from databases that are hosted on the Database

Server.
1 The Database Server sends the requested data to the Web Publishing Engine.
1 The Web Publishing Engine sends the data to the PHP engine on the web server in response

to the API call.
1 The PHP solution processes the data, and displays it for the web user.
General steps for Custom Web Publishing with PHP

Here is a summary of the steps for using Custom Web Publishing with PHP:

1. In Admin Console, make sure Enable PHP publishing is selected. See FileMaker Server
Getting Started Guide.

2. In Admin Console, choose the Databases pane and make sure each FileMaker database that
you’re publishing has the fmphp extended privilege enabled for Custom Web Publishing with
PHP.
If necessary, use FileMaker Pro to enable Custom Web Publishing for a database. See
chapter 2, “Preparing databases for Custom Web Publishing.”

Note Make sure that you use equivalent FileMaker database privilege sets when developing
PHP solutions that will be given to the end user. Otherwise, you may have access to layouts
and features in the FileMaker database that will not be available to the end user, causing
inconsistent behavior.

3. Use PHP authoring tools to create your PHP solution, incorporating the FileMaker API functions
into your PHP code to access your FileMaker data. See chapter 8, “Using the FileMaker API for
PHP.”

Chapter 7 | Overview of Custom Web Publishing with PHP 65
4. Copy or move your site directory structure and files to the following folder on the web server.
1 For IIS (Windows) through HTTP or HTTPS:
[drive]:\Program Files\FileMaker\FileMaker Server\HTTPServer\Conf
where [drive] is the drive on which the Web Publishing Engine component of your
FileMaker Server deployment resides.

1 For Apache (OS X) through HTTP:
/Library/FileMaker Server/HTTPServer/htdocs

1 For Apache (OS X) through HTTPS:
/Library/FileMaker Server/HTTPServer/htdocs/httpsRoot

5. If a database container field stores a file reference instead of an actual file, the referenced
container object must be stored in the FileMaker Pro Web folder when the record is created or
edited. You must copy or move the object to a folder with the same relative location in the root
folder of the web server software.
See “About publishing the contents of container fields on the web” on page 15.

6. Make sure that security mechanisms for your site or program are in place.

7. Test your site using the same accounts and privileges defined for web users.

8. Make the site available and known to users. The URL that the web user enters follows this format:
http://<server>/<site_path>

1 <server> is the machine on which the FileMaker Server resides
1 <site_path> is the relative path to the home page for your site, determined by the directory

structure you used in step 4 above.
For example, if your web server is 192.168.123.101 and your site home page is on the web server
at c:\Inetpub\wwwroot\customers\index.php, then the web user would enter this URL:
http://192.168.123.101/customers/index.php

Note PHP uses Latin-1 (ISO-8859-1) encoding. FileMaker Server returns Unicode (UTF-8) data.
Use the FileMaker Server Admin Console to specify the default character encoding for your site.
For PHP sites, you can specify either UTF-8 or ISO-8859-1; UTF-8 is recommended. Specify the
same setting for the charset attribute in the <HEAD> section of your site PHP files.

For information on deploying and using a PHP solution, see chapter 9, “Staging, testing, and
monitoring a site.”

Chapter 8
Using the FileMaker API for PHP
The FileMaker API for PHP implements a PHP class—the FileMaker class—that provides an
object-oriented interface to FileMaker databases. The FileMaker API for PHP enables both data
and logic stored in FileMaker Pro databases to be accessed and published on the web, or
exported to other applications.
The FileMaker API for PHP allows PHP code to perform the same kind of functions you already
have available in FileMaker Pro databases:
1 create, delete, edit, and duplicate records
1 perform find requests
1 perform field and record validation
1 use layouts
1 run FileMaker scripts
1 display portals and related records
1 use value lists
This chapter describes how to use the FileMaker class objects and methods to add these common
functions to a PHP solution. This chapter does not cover the entire the FileMaker API for PHP, but
introduces key objects and methods.
Where to get additional information

To learn more about the FileMaker API for PHP, see the following resources.
If you already have a PHP engine installed and configured and you want to add only the FileMaker
API for PHP, see “Manually installing the FileMaker API for PHP” on page 62.

FileMaker API for PHP Reference
If you installed the FileMaker API for PHP, you can find reference information on the web server
component of your FileMaker Server deployment.
1 For IIS (Windows):
[drive]:\Program Files\FileMaker\FileMaker Server\Documentation\PHP
API Documentation\index.html
where [drive] is the drive on which the web server component of your FileMaker Server
deployment resides.

1 For Apache (OS X): /Library/FileMaker Server/Documentation/PHP API
Documentation/index.html

Chapter 8 | Using the FileMaker API for PHP 67
FileMaker API for PHP support
You can find additional information about the FileMaker API for PHP on the FileMaker website:
http://www.filemaker.com/support/technologies/php.html
Using the FileMaker class

To use the FileMaker class in your PHP solution, add the following statement to your PHP code:
require_once ('FileMaker.php');

FileMaker class objects
The FileMaker class defines class objects that you can use to retrieve data from FileMaker Pro
databases.

FileMaker command objects
The FileMaker class defines a base command object that you use to instantiate a specific
command and to specify the command’s parameters. To execute the command, you must call the
execute() method.

The FileMaker class defines the following specific commands:
1 Add command
1 Compound Find command
1 Delete command
1 Duplicate command
1 Edit command
1 Find command, Find All command, Find Any command
1 Find Request command, which gets added to a Compound Find command
1 Perform Script command

These commands are described in more detail in the following sections:
1 “Working with records” on page 68

Class Object Use the object to
FileMaker database Define the database properties

Connect to a FileMaker Pro database
Get information about the FileMaker API for PHP

Command Create commands that add records, delete records, duplicate records, edit records,
perform find requests, and perform scripts.

Layout Work with database layouts

Record Work with record data

Field Work with field data

Related set Work with portal records

Result Process the records returned from a Find request

Error Check whether an error has occurred
Process any errors

Chapter 8 | Using the FileMaker API for PHP 68
1 “Running FileMaker scripts” on page 70
1 “Performing find requests” on page 75
Connecting to a FileMaker database

The FileMaker class defines a database object that you instantiate in order to connect to a server
or to a database. Define the object properties with the class constructor, or by calling the
setProperty() method.

Example: Connecting to a server to get a list of databases

$fm = new FileMaker();

$databases = $fm->listDatabases();

Example: Connecting to a specific database on a server

The username and password properties determine the privilege set for this connection.
$fm = new FileMaker();

$fm->setProperty('database', 'questionnaire');

$fm->setProperty('hostspec', 'http://192.168.100.110');

$fm->setProperty('username', 'web');

$fm->setProperty('password', 'web');

Note The hostspec property defaults to the value http://localhost. If the PHP engine is
running on the same machine as the web server component of the FileMaker Server deployment,
there is no need to specify the hostspec property. If the PHP engine is on a different machine, use
the hostspec property to specify the location of the web server component of the FileMaker Server
deployment.
Working with records

The FileMaker class defines a record object that you instantiate to work with records. An instance
of a record object represents one record from a FileMaker Pro database. Use a record object with
Add, Delete, Duplicate, and Edit commands to change the data in the record. The Find
commands—Find, Find All, Find Any, and Compound Find—return an array of record objects.

Creating a record
There are two ways to create a record:
1 Use the createRecord() method, specifying a layout name, and optionally specifying an

array of field values. You can also set values individually in the new record object.
The createRecord() method does not save the new record to the database. To save the
record to the database, call the commit() method.
For example:
$rec = $fm->createRecord('Form View', $values);

$result = $rec->commit();

Chapter 8 | Using the FileMaker API for PHP 69
1 Use the Add command. Use the newAddCommand() method to create a
FileMaker_Command_Add object, specifying the layout name and an array with the record
data. To save the record to the database, call the execute() method.
For example:
$newAdd = $fm->newAddCommand('Respondent', $respondent_data);

$result = $newAdd->execute();

Duplicating a record
Duplicate an existing record using the Duplicate command. Use the newDuplicateCommand()
method to create a FileMaker_Command_Duplicate object, specifying the layout name and the
record ID of the record that you want to duplicate. Then, duplicate the record by calling the
execute() method.

Example

$newDuplicate = $fm->newDuplicateCommand('Respondent', $rec_ID);

$result = $newDuplicate->execute();

Editing a record
There are two ways to edit a record:
1 Using the Edit command. Use the newEditCommand() method to create a

FileMaker_Command_Edit object, specifying the layout name, the record ID of the record you
want to edit, and an array of values that you want to update. Then, edit the record by calling the
execute() method.
For example:
$newEdit = $fm->newEditCommand('Respondent', $rec_ID, $respondent_data);

$result = $newEdit->execute();

1 Using a record object. Retrieve a record from the database, change field values, and then edit
the record by calling the commit() method.
For example:
$rec = $fm->getRecordById('Form View', $rec_ID);

$rec->setField('Name', $nameEntered);

$result = $rec->commit();

Deleting a record
There are two ways to delete a record:
1 Retrieve a record from the database, and then call the delete() method.

For example:
$rec = $fm->getRecordById('Form View', $rec_ID);

$rec->delete();

Chapter 8 | Using the FileMaker API for PHP 70
1 Delete an existing record using the Delete command. Use the newDeleteCommand() method
to create a FileMaker_Command_Delete object, specifying the layout name and the record ID
of the record you want to delete. Then, delete the record by calling the execute() method.
For example:
$newDelete = $fm->newDeleteCommand('Respondent', $rec_ID);

$result = $newDelete->execute();
Running FileMaker scripts

A FileMaker script is a named set of script steps. The FileMaker class defines several methods
that allow you to work with FileMaker scripts defined in a FileMaker Pro database. For information
on web-compatible script steps (the script steps that can be performed in a web solution), see
“FileMaker scripts and Custom Web Publishing” on page 18.

Obtaining the list of available scripts
Use the listScripts() method to get a list of available scripts from the currently connected
database. The listScripts() method returns an array of scripts that can be executed by the
username and password specified when the database connection was defined. (See “Connecting
to a FileMaker database” on page 68.)

Example

$scripts = $fm->listScripts();

Running a FileMaker script
Use the newPerformScriptCommand() method to create a
FileMaker_Command_PerformScript object, specifying the layout, script name, and any script
parameters. Then, perform the script by calling the execute() method.

Example

$newPerformScript = $fm->newPerformScriptCommand('Order Summary',
'ComputeTotal');

$result = $newPerformScript->execute();

Running a script before executing a command
Use the setPreCommandScript() method to specify a script that runs before a command is
run. The following example uses a Find command, but you can use the
setPreCommandScript() method with any command.

Example

$findCommand = $fm->newFindCommand('Students');

$findCommand->addFindCriterion('GPA', $searchValue);

$findCommand->setPreCommandScript('UpdateGPA');

$result = $findCommand->execute();

Chapter 8 | Using the FileMaker API for PHP 71
Running a script before sorting a result set
Use the setPreSortScript() method to specify a script that is run after a Find result set is
generated, but before the result set is sorted. For more information, see “Using the Find
command” on page 76.

Example

$findCommand = $fm->newFindCommand('Students');

$findCommand->setPreSortScript('RemoveExpelled');

Running a script after the result set is generated
Use the setScript() method to specify a script that is run after a Find result set is generated.
For more information, see “Using the Find command” on page 76.

Example

$findCommand = $fm->newFindCommand('Students');

$findCommand->setScript('myScript','param1|param2|param3');

Script execution order
You can specify the setPreCommandScript(), setPreSortScript(), and setScript()
methods in conjunction with the setResultLayout() and addSortRule() methods for a
single command. Here is the order in which FileMaker Server and the Web Publishing Engine
process these methods:

1. Run the script specified on the setPreCommandScript() method, if specified.

2. Process the command itself, such as a Find or Delete Record command.

3. Run the script specified on the setPreSortScript() method, if specified.

4. Sort the Find result set, if the addSortRule() method was specified.

5. Process the setResultLayout() method to switch to a different layout, if this is specified.

6. Run the script specified on the setScript() method, if specified.

7. Return the final Find result set.

If one of the above steps generates an error code, the command execution stops; any steps that
follow are not executed. However, any prior steps in the request are still executed.
For example, consider a command that deletes the current record, sorts the records, and then
executes a script. If the addSortRule() method specifies a non-existent field, the request
deletes the current record and returns error code 102 (“Field is missing”), but does not execute
the script.

Chapter 8 | Using the FileMaker API for PHP 72
Working with FileMaker layouts

A layout is the arrangement of fields, objects, pictures, and layout parts that represents the way
information is organized and presented when the user browses, previews, or prints records. The
FileMaker class defines several methods that allow you to work with the layouts defined in a
FileMaker Pro database. You can get information about layouts from several of the FileMaker
class objects.

With this class object Use these methods
Database 1 listLayouts() obtains a list of available layout names.

1 getLayout() obtains a layout object by specifying a layout name.

Layout 1 getName() retrieves the layout name of a specific layout object.
1 listFields() retrieves an array of all field names used in a layout.
1 getFields() retrieves an associative array with the names of all fields as keys, and

the associated FileMaker_Field objects as array values.
1 listValueLists() retrieves an array of value list names.
1 listRelatedSets() retrieves an array of related sets names.
1 getDatabase() returns the name of the database.

Record 1 getLayout() returns the layout object associated with a specific record.

Field 1 getLayout() returns the layout object containing specific field.

Command 1 setResultLayout() returns the command’s results in a layout different from the
current layout.
Using portals

A portal is table that displays rows of data from one or more related records. The FileMaker class
defines a related set object and several methods that allow you to work with portals defined in a
FileMaker Pro database.
A related set object is an array of record objects from the related portal; each record object
represents one row of data in the portal.

Listing the portals defined on a specific layout
For a specific layout object, use the listRelatedSets() method to retrieve a list of table
names for all portals defined in this layout.

Example

$tableNames = $currentLayout->listRelatedSets();

Obtaining portal names for a specific result object
For a specific FileMaker_Result object, use the getRelatedSets() method to retrieve the
names of all portals in this record.

Example

$relatedSetsNames = $result->getRelatedSets();

Chapter 8 | Using the FileMaker API for PHP 73
Obtaining information about portals for a specific layout
For a specific layout object, use the getRelatedSets() method to retrieve an array of
FileMaker_RelatedSet objects that describe the portals in the layout. The returned array is an
associative array with the table names as the array keys, and the associated
FileMaker_RelatedSet objects as the array values.

Example

$relatedSetsArray = $currentLayout->getRelatedSets();

Obtaining information for a specific portal
For a specific layout object, use the getRelatedSet() method to retrieve the
FileMaker_RelatedSet object that describes a specific portal.

Example

$relatedSet = $currentLayout->getRelatedSet('customers');

Obtaining the table name for a portal
For a related set object, use the getName() method to get the table name for the portal.

Example

$tableName = $relatedSet->getName();

Obtaining the portal records for a specific record
For a specific record object, use the getRelatedSet() method to retrieve an array of related
records for a specific portal on that record.

Example

$relatedRecordsArray = $currentRecord->getRelatedSet('customers');

Creating a new record in a portal
Use the newRelatedRecord() method to create a new record in the specified related set, and
commit the change to the database by calling the commit() method.

Example

//create a new portal row in the 'customer' portal

$new_row = $currentRecord->newRelatedRecord('customer');

//set the field values in the new portal row

$new_row->setField('customer::name', $newName);

$new_row->setField('customer::company', $newCompany);

$result = $new_row->commit();

Chapter 8 | Using the FileMaker API for PHP 74
Deleting a record from a portal
Use the delete() method to delete a record in a portal.

Example

$relatedSet = $currentRecord->getRelatedSet('customers');

/* Runs through each of the portal rows */

foreach ($relatedSet as $nextRow) {

$nameField = $nextRow->getField('customer::name')

if ($nameField == $badName) {

$result = $newRow->delete();

}

}

Using value lists

A value list is set of predefined choices. The FileMaker class defines several methods that allow
you to work with value lists defined in a FileMaker Pro database.

Obtaining the names of all value lists for a specific layout
For a specific layout object, use the listValueLists() method to retrieve an array that
contains value list names.

Example

$valueListNames = $currentLayout->listValueLists();

Obtaining an array of all value lists for a specific layout
For a specific layout object, use the getValueListsTwoFields() method to retrieve an array
containing the values from all value lists. The returned array is an associative array. The array keys
are the value list names, and the array values are associative arrays that list the display names
and their corresponding choices from each value list.

Example

$valueListsArray = $currentLayout->getValueListsTwoFields();

Note Although the getValueLists() method is still supported in the FileMaker API for PHP,
it will be deprecated. Instead, use the getValueListsTwoFields() method.

Obtaining the values for a named value list
For a specific layout object, use the getValueListTwoFields() method to get an array of
choices defined for the named value list. The returned array is an associative array that contains
the displayed values from the second field of the value list as the keys, and the associated stored
values from the first field as the array values.

Chapter 8 | Using the FileMaker API for PHP 75
Depending on the options selected in the Specify Fields for Value List dialog box in the FileMaker
database, the getValueListTwoFields() method returns the value in the first field only, the
value in the second field only, or the values in both fields of a value list as the stored and displayed
values.
1 If Also display values from second field is not selected, the getValueListTwoFields()

method returns the value from the first field of the value list as both the stored value and the
displayed value.

1 If Also display values from second field and Show values only from second field are both
selected, the getValueListTwoFields() method returns the value from the first field as
the stored value, and the value from the second field as the displayed value.

1 If Also display values from second field is selected and Show values only from second
field is not selected, the getValueListTwoFields() method returns the value from the first
field as the stored value, and both values from the first and second fields as the displayed value.

Use an iterator with the getValueListTwoFields() method to find the displayed value and
stored value.

Example

$layout = $fm->getLayout('customers');

$valuearray = $layout->getValueListTwoFields("region", 4);

foreach ($valuearray as $displayValue => $value) {

....

}

Notes

1 Although the getValueList() method is still supported in the FileMaker API for PHP, it will
be deprecated. Instead, use the getValueListTwoFields() method.

1 When using the getValueListTwoFields() method, be sure to use a foreach loop to loop
through the associative array. Do not use a for loop because it can return unexpected results.
Performing find requests

The FileMaker class defines four kinds of Find command objects:
1 Find All command. See “Using the Find All command” on page 76.
1 Find Any command. See “Using the Find Any command” on page 76.
1 Find command. See “Using the Find command” on page 76.
1 Compound Find command. See “Using a Compound Find command” on page 77.

The FileMaker class also defines several methods that can be used for all four types of Find
commands:
1 Use the addSortRule() method to add a rule defining how the result set is sorted. Use the
clearSortRules() method to clear all sort rules that have been defined.

1 Use the setLogicalOperator() method to change between logical AND searches and
logical OR searches.

Chapter 8 | Using the FileMaker API for PHP 76
1 Use the setRange() method to request only part of the result set. Use the getRange()
method to retrieve the current range definition.
Using the setRange() method can improve the performance of your solution by reducing the
number records that are returned by the Find request. For example, if a Find request returns
100 records, you can split the result set into five groups of 20 records each rather than
processing all 100 records at once.

1 You can execute FileMaker scripts in conjunction with Find commands.
1 To run a script before executing the Find command, use the setPreCommandScript()

method.
1 To run a script before sorting the result set, use the setPreSortScript() method.
1 To run a script after a result set is generated, but before the result set is sorted, use the
setScript() method.

Using the Find All command
Use the Find All command to retrieve all records from a specified layout. Use the
newFindAllCommand() method, specifying a specific layout, to create a
FileMaker_Command_FindAll object. Then, perform the find request by calling the execute()
method.

Example

$findCommand = $fm->newFindAllCommand('Form View');

$result = $findCommand->execute;

Note When using the Find All command, avoid computer memory overload problems by
specifying a default maximum number of records to return per page.

Using the Find Any command
Use the Find Any command to retrieve one random record from a specified layout. Use the
newFindAnyCommand() method, specifying a specific layout, to create a
FileMaker_Command_FindAny object. Then, perform the find request by calling the execute()
method.

Example

$findCommand = $fm->newFindAnyCommand('Form View');

$result = $findCommand->execute;

Using the Find command
Use the newFindCommand() method, specifying a specific layout, to create a
FileMaker_Command_Find object. Then, perform the find request by calling the execute()
method.
Use the addFindCriterion() method to add criteria to the find request. Use the
clearFindCriteria() method to clear all find criteria that have been defined.

Chapter 8 | Using the FileMaker API for PHP 77
Example - Finding a record by field name

$findCommand = $fm->newFindCommand('Form View');

$findCommand->addFindCriterion('Questionnaire ID', $active_questionnaire_id);

$result = $findCommand->execute();

Example - Adding a sort order

$findCommand = $fm->newFindCommand('Customer List');

$findCommand->addSortRule('Title', 1, FILEMAKER_SORT_ASCEND);

$result = $findCommand->execute();

Using a Compound Find command
The Compound Find command lets you combine multiple Find Request objects into one
command.

To create a Compound Find command:
1 Create a FileMaker_Command_CompoundFind object by calling the
newCompoundFindCommand() method.

1 Create one or more FileMaker_Command_FindRequest objects by calling the
newFindRequest() method.

1 Use the add() method to add the Find Request objects to the Compound Find command
object.

1 Perform the Compound Find command by calling the execute() method.

Chapter 8 | Using the FileMaker API for PHP 78
Example - Compound Find command

// Create the Compound Find command object

$compoundFind = $fm->newCompoundFindCommand('Form View');

// Create first find request

$findreq1 = $fm->newFindRequest('Form View');

// Create second find request

$findreq2 = $fm->newFindRequest('Form View');

// Create third find request

$findreq3 = $fm->newFindRequest('Form View');

// Specify search criterion for first find request

$findreq1->addFindCriterion('Quantity in Stock', '<100');

// Specify search criterion for second find request

$findreq2->addFindCriterion('Quantity in Stock', '0');

// Specify search criterion for third find request

$findreq3->addFindCriterion('Cover Photo Credit', 'The London Morning News');

// Add find requests to compound find command

$compoundFind->add(1,$findreq1);

$compoundFind->add(2,$findreq2);

$compoundFind->add(3,$findreq3);

// Set sort order

$compoundFind->addSortRule('Title', 1, FILEMAKER_SORT_DESCEND);

// Execute compound find command

$result = $compoundFind->execute();

// Get records from found set

$records = $result->getRecords();

// Print number of records found

echo 'Found '. count($records) . " results.

";

Chapter 8 | Using the FileMaker API for PHP 79
Processing the records in a result set
1 Retrieve an array containing each record in the result set by calling the getRecords()

method. Each member of the array is a FileMaker_Record object, or an instance of the class
name set in the API for instantiating records. The array may be empty if the result set contains
no records.

1 Get a list of field names for all fields in the result set by calling the getFields() method. The
method returns only the field names. If you need additional information about the fields, use the
associated layout object.

1 Get the number of records in the entire found set by calling the getFoundSetCount()
method.

1 Get the number of records in the filtered found set by calling the getFetchCount() method.
If no range parameters were specified on the Find command, then this value is equal to the
result of the getFoundSetCount() method. It is always equal to the value of
count($response->getRecords()).

1 For a specific record, use the getField() method to return the contents of a field as a string.
1 For a specific record, use the getFieldAsTimestamp() method to return the contents of a

field as a Unix timestamp (the PHP internal representation of a date).
1 If the field is a date field, the timestamp is for the field date at midnight.
1 If the field is a time field, the timestamp is for that time on January 1, 1970.
1 If the field is a timestamp field, the FileMaker timestamp value maps directly to the Unix

timestamp.
1 If the specified field is not a date or time field, or if the timestamp generated would be out of

range, the getFieldAsTimestamp() method return a FileMaker_Error object.
1 For a specific record, use the getContainerData() method to return a container field object

as binary data:
<IMG src=”img.php?-url=<?php echo urlencode($record->getField('Cover
Image')); ?>”>

echo $fm->getContainerData($_GET['-url']);

1 For a specific record, use the getContainerDataURL() method to return a fully qualified
URL for the container field object:
// For images, use the HTML img tag

 echo '
getContainerDataURL($record->getField('container')) .'">';

// For movies and PDF files, use the HTML embed tag

 //echo '<embed src="'.$fm->
getContainerDataURL($record->getField('container')) .'">';

Chapter 8 | Using the FileMaker API for PHP 80
Filtering portal rows returned by find requests
In a solution that has many related records, querying and sorting portal records can be time
consuming. To restrict the number of records to display in a related set, use the
setRelatedSetsFilters() method with find requests. The setRelatedSetsFilters()
method takes two arguments:
1 a related sets filter value: layout or none.

1 If you specify the value none, the Web Publishing Engine returns all rows in the portal, and
portal records are not presorted.

1 If you specify the value layout, then the settings specified in the FileMaker Pro Portal Setup
dialog box are respected. The records are sorted based on the sort defined in the Portal
Setup dialog box, with the record set filtered to start with the initial row specified.

1 the maximum number of portal records returned: an integer value or all.
1 This value is used only if the Allow vertical scrolling setting is enabled in the Portal Setup

dialog box. If you specify an integer value, that number of rows after the initial row are
returned. If you specify all, the Web Publishing Engine returns all of the related records.

1 If the Allow vertical scrolling setting is disabled, the Portal Setup dialog box’s Number of
rows setting determines the maximum number of related records that are returned.
Pre-validating commands, records, and fields

The FileMaker class lets you pre-validate field data in a PHP solution on the web server before
committing the data to the database.
When deciding whether to use pre-validation, consider the number of data values that the web
user is entering. If the user is updating a small number of fields, then you could improve
performance by not using pre-validation. But if the user is entering data for many fields, then pre-
validation can keep the user from being frustrated by having a record rejected by the database for
validation errors.

With the FileMaker class, the PHP engine pre-validates the following field constraints:
1 not empty

Valid data is a non-empty character string. The data must contain at least one character.
1 numeric only

Valid data contains numeric characters only.
1 maximum number of characters

Valid data contains at most the maximum number of characters specified.
1 four-digit year

Valid data is a character string representing a date with a four-digit year in the format
M/D/YYYY, where M is a number between 1 and 12 inclusive, D is a number between 1 and 31
inclusive, and YYYY is a four-digit number between 0001 and 4000 inclusive. For example,
1/30/3030 is a valid four-digit year value. However, 4/31/2015 is an invalid four-digit year
value because April does not have 31 days. Date validation supports forward slash (/), back
slash (\), and hyphen (-) as delimiters. However, the string cannot contain a mix of delimiters.
For example, 1\30-2015 is invalid.

Chapter 8 | Using the FileMaker API for PHP 81
1 time of day
Valid data is a character string representing a 12-hour time value in the one of these formats:
1 H
1 H:M
1 H:M:S
1 H:M:S AM/PM
1 H:M AM/PM
where H is a number between 1 and 12 inclusive; M and S are numbers between 1 and 60
inclusive.

The PHP engine pre-validation supports implicit checking of field data based on the type of the field:
1 date

A field defined as a date field is validated according to the rules of “four-digit year” validation,
except the year value can contain 0-4 digits (the year value can be empty). For example, 1/30
is a valid date even though it has no year specified.

1 time
A field defined as a time field is validated according to the rules of “time of day” validation,
except the hour component (H) can be a number between 1 and 24 inclusive to support 24-hour
time values.

1 timestamp
A field defined as a timestamp field is validated according to the rules of “time” validation for the
time component and according to the rules of “date” validation for the date component.

The FileMaker class cannot pre-validate all of the field validation options that are available in
FileMaker Pro. The following validation options cannot be pre-validated because they are
dependent on the state of all the data in the database at the time that the data is committed:
1 unique value
1 existing value
1 in range
1 member of value list
1 validate by calculation

Pre-validating records in a command
For a command object, use the validate() method to validate one field or the entire command
against the pre-validation rules enforceable by the PHP engine. If you pass the optional field name
argument, only that field is pre-validated.
If the pre-validation passes, then the validate() method returns TRUE. If the pre-validation
fails, then the validate() method returns a FileMaker_Error_Validation object containing
details about what failed to validate.

Chapter 8 | Using the FileMaker API for PHP 82
Pre-validating records
For a record object, use the validate() method to validate one field or all the fields in the record
against the pre-validation rules enforceable by the PHP engine. If you pass the optional field name
argument, only that field is pre-validated.
If the pre-validation passes, then the validate() method returns TRUE. If the pre-validation
fails, then the validate() method returns a FileMaker_Error_Validation object containing
details about what failed to validate.

Pre-validating fields
For a field object, use the validate() method to determine whether a given value is valid for a
field.
If the pre-validation passes, then the validate() method returns TRUE. If the pre-validation
fails, then the validate() method returns a FileMaker_Error_Validation object containing
details about what failed to validate.

Processing the validation errors
When pre-validation fails, the FileMaker_Error_Validation object returned contains a three-
element array for each validation failure:

1. The field object that failed pre-validation

2. A validation constant value that indicates the validation rule that failed:
1 - FILEMAKER_RULE_NOTEMPTY
2 - FILEMAKER_RULE_NUMERICONLY
3 - FILEMAKER_RULE_MAXCHARACTERS
4 - FILEMAKER_RULE_FOURDIGITYEAR
5 - FILEMAKER_RULE_TIMEOFDAY
6 - FILEMAKER_RULE_TIMESTAMP_FIELD
7 - FILEMAKER_RULE_DATE_FIELD
8 - FILEMAKER_RULE_TIME_FIELD

3. The actual value entered for the field that failed pre-validation

You can also use the following methods with a FileMaker_Error_Validation object:
1 Use the isValidationError() method to test whether the error is a validation error.
1 Use the numErrors() method to get the number of validation rules that failed.

Chapter 8 | Using the FileMaker API for PHP 83
Example

//Create an Add request

$addrequest = $fm->newAddCommand('test', array('join' => 'added', 'maxchars' =>
'abcx', 'field' => 'something' , 'numericonly' => 'abc'));

//Validate all fields

$result = $addrequest->validate();

//If the validate() method returned any errors, print the name of the field, the
error number, and the value that failed.

if(FileMaker::isError($result)){

echo 'Validation failed:'. "\n";

$validationErrors= $result->getErrors();

foreach ($validationErrors as $error) {

$field = $error[0];

echo 'Field Name: ' . $field->getName(). "\n";

echo 'Error Code: ' . $error[1] . "\n";

echo 'Value: ' . $error[2] . "\n";

}

}

Output

Validation failed:

Field Name: numericonly

Error Code: 2

Value: abc

Field Name: maxchars

Error Code: 3

Value: abcx

Chapter 8 | Using the FileMaker API for PHP 84
Handling errors

The FileMaker class defines the FileMaker_Error object to help you handle errors that occur in a
PHP solution.
An error can occur when a command runs. If an error does occur, the command returns a
FileMaker_Error object. It is a good practice to check the error that is returned when a command
runs.

Use the following methods to learn more about the error indicated in the FileMaker_Error object.
1 Test for whether a variable is a FileMaker Error object by calling the isError() method.
1 Get the number of errors that occurred by calling the numErrors() method.
1 Retrieve an array of arrays describing the errors that occurred by calling the getErrors()

method.
1 Display an error message by calling the getMessage() method.

Example

$result = $findCommand->execute();

if (FileMaker::isError($result)) {

 echo "<p>Error: " . $result->getMessage() . "</p>";

 exit;

}

For information about the error codes returned with the FileMaker Error object, see appendix A,
“Error codes for Custom Web Publishing.”

Chapter 9
Staging, testing, and monitoring a site
This chapter provides instructions for staging and testing a Custom Web Publishing site before
deploying it in a production environment. Instructions are also provided for using log files to
monitor the site during testing or after deployment.
Staging a Custom Web Publishing site

Before you can properly test your site, you must copy or move the required files to the correct
locations on the staging server(s).
To stage your site and prepare it for testing:

1. Complete all of the steps outlined in chapter 2, “Preparing databases for Custom Web
Publishing.”

2. Check that Custom Web Publishing has been enabled and properly configured in
FileMaker Server Admin Console.

Note For instructions, see FileMaker Server Help.

3. Verify that the web server and the Web Publishing Engine are running.

4. Copy or move your site files to the web server component of your FileMaker Server
deployment.
Copy or move your site files to the following directory on the web server machine:
1 IIS (Windows) through HTTP or HTTPS:

[drive]:\Program Files\FileMaker\FileMaker Server\HTTPServer\Conf
where [drive] is the drive on which the Web Publishing Engine component of your
FileMaker Server deployment resides.

1 Apache (OS X) through HTTP: /Library/FileMaker Server/HTTPServer/htdocs
1 Apache (OS X) through HTTPS: /Library/FileMaker Server/HTTPServer/htdocs/httpsRoot

Chapter 9 | Staging, testing, and monitoring a site 86
5. If you have not already done so, copy or move any referenced container field objects to the
appropriate directory on the web server machine.
1 If the database file is properly hosted and accessible on the Database Server component of

the FileMaker Server deployment, and the container fields store the actual files in the
FileMaker database, then you don’t need to relocate the container field contents.

1 If a database container field stores a file reference instead of an actual file, then the
referenced container object must be stored in the FileMaker Pro Web folder when the record
is created or edited. To stage your site, you must copy or move the referenced containers to
a folder with the same relative location in the root folder of the web server software.

1 When you use FileMaker Pro to upload a database with container fields that store objects
externally, the externally stored container field data is uploaded to FileMaker Server as part of
the process. See FileMaker Pro Help for information on transferring the database files to
FileMaker Server.

1 When you manually upload a database that uses a container field with externally stored
objects, then you must copy or move the referenced objects into a subfolder of the
RC_Data_FMS folder, as described in “Container fields with externally stored data” on
page 16.

6. Copy any additional components of your web application to the web server machine. For
Custom Web Publishing with XML, your web application processes the XML data before
sending it to another application or to the client.
Testing a Custom Web Publishing site

Before notifying users that your Custom Web Publishing site is available, verify that it looks and
functions as you expect.
1 Test features like finding, adding, deleting, and sorting records with different accounts and

privilege sets.
1 Verify that privilege sets are performing as expected by logging in with different accounts. Make

sure unauthorized users can’t access or modify your data.
1 Check all scripts to verify that the outcome is expected. See “FileMaker scripts and Custom

Web Publishing” on page 18 for information on designing web-friendly scripts.
1 Test your site with different operating systems and web browsers.
1 When creating solutions that use the FileMaker API for PHP, it is recommended that you build

your solutions with cookie support enabled. The FileMaker API for PHP has better response
times with cookies enabled. Cookies are not required to use Custom Web Publishing features,
but cookies do allow the Web Publishing Engine to cache session information.

Note If you have installed the web server, Web Publishing Engine, and the Database Server in
a single-machine deployment, you can view and test your site without using a network connection
by using http://127.0.0.1/ in the URL.

1 For PHP solutions, use http://127.0.0.1/<site_path>
where <site_path> is the relative path to the homepage for your site.

1 For information on the URL syntax in XML solutions, see “About the URL syntax for XML data
and container objects” on page 26.

Chapter 9 | Staging, testing, and monitoring a site 87
Examples of stylesheets for testing XML output

Here are two examples of XSLT stylesheets that are useful for testing XML output.
1 The following stylesheet example outputs the requested XML data without doing any

transformation. This stylesheet is useful for displaying the actual XML data that the Web
Publishing Engine is using.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmrs="http://www.filemaker.com/xml/fmresultset">

<xsl:output method="xml"/>

<xsl:template match="/">

<xsl:copy-of select="."/>

</xsl:template>

</xsl:stylesheet>

1 When debugging a stylesheet, you can use the following example of an HTML <textarea> tag
to display the XML source document that was accessed via the stylesheet in a scrolling text
area.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmrs="http://www.filemaker.com/xml/fmresultset">

<xsl:output method="html"/>

<html>

<body>

<xsl:template match="/fmrs:fmresultset">

<textarea rows="20" cols="100">

<xsl:copy-of select="."/>

</textarea>

</xsl:template>

</body>

</html>

</xsl:stylesheet>
Monitoring your site

You can use the following types of log files to monitor your Custom Web Publishing site and gather
information about web users who visit your site:
1 Web server access and error logs
1 Web Publishing Engine log
1 Web Server Module error log
1 Tomcat logs

Chapter 9 | Staging, testing, and monitoring a site 88
Using the web server access and error logs
IIS (Windows): The Microsoft IIS web server generates an access log file and displays errors in
the Windows Event Viewer instead of writing them to a log file. The access log file, which is in the
W3C Extended Log File Format by default, is a record of all incoming HTTP requests to the web
server. You can also use the W3C Common Logfile Format for the access log. For more
information, see the documentation for the Microsoft IIS web server.
Apache (OS X): The Apache web server generates an access log file and an error log file. The
Apache access log file, which is in the W3C Common Logfile Format by default, is a record of all
incoming HTTP requests to the web server. The Apache error log is a record of problems involving
processing HTTP requests. For more information on these log files, see the documentation for the
Apache web server.

Note For information on the W3C Common Logfile Format and the W3C Extended Log File
Format, see the World Wide Web Consortium website at http://www.w3.org.

Using the Web Publishing Engine log
By default, the Web Publishing Engine generates a log file called wpe.log that contains a record
of any Web Publishing Engine errors that have occurred, including application errors, usage
errors, and system errors. You can also have the Web Publishing Engine include information
related to Custom Web Publishing, such as end-user XML requests to generate web publishing
output or changes to the Custom Web Publishing settings.
The wpe.log file is located on the Web Publishing Engine component of the FileMaker Server
deployment:
1 IIS (Windows):
[drive]:\Program Files\FileMaker\FileMaker Server\Logs\wpe.log
where [drive] is the primary drive from which the system is started.

1 Apache (OS X): /Library/FileMaker Server/Logs/wpe.log

Web Publishing Engine log settings

The wpe.log file is generated if the Enable logging for Web Publishing setting is enabled in
Admin Console.

The Error level messages setting is enabled by default. For information on setting these options
using Admin Console, see FileMaker Server Help.

Important Over time, the wpe.log file may become very large. Use Admin Console to set the
maximum size for the wpe.log file. When the wpe.log file reaches this maximum size, the Web
Publishing Engine copies the wpe.log file to a single backup file, wpe.log.1, and creates a new
wpe.log file. You may wish to save an archive of the wpe.log.1 file on a regular basis, if you want
more than one backup copy.

Logging option enabled Information recorded in wpe.log
Error level messages Any Web Publishing Engine errors that have occurred, including application errors,

usage errors, and system errors.

Info and Error Level
messages

Any errors as described above, and information about access to the Web Publishing
Engine. It contains a record of all end-user XML requests to generate Custom Web
Publishing output.

http://www.w3.org

Chapter 9 | Staging, testing, and monitoring a site 89
Web Publishing Engine log format

The wpe.log file uses the following format for each entry:
[TIMESTAMP_GMT] [WPC_HOSTNAME] [CLIENT_IP:PORT] [ACCOUNT_NAME] [MODULE_TYPE]
[SEVERITY] [FM_ERRORCODE] [RETURN_BYTES] [MESSAGE]

where:
1 [TIMESTAMP_GMT] is the date and time of the entry, in Greenwich Mean Time (GMT).
1 [WPC_HOSTNAME] is the machine name for the machine where the Web Publishing Engine is

installed.
1 [CLIENT_IP:PORT] is the IP address and port of the client where the XML request originated.
1 [ACCOUNT_NAME] is the account name used for logging into the hosted FileMaker database.
1 [MODULE_TYPE] is either: XML, for Custom Web Publishing with XML requests, or PHP, for

Custom Web Publishing with PHP requests.
1 [SEVERITY] is either INFO, indicating an informational message, or ERROR, indicating an

error message.
1 [FM_ERROR_CODE] is the error number returned for an error message. The error number may

be an error code for FileMaker databases (see “Error code numbers for FileMaker databases”
on page 91).
In addition, the error number may be an HTTP error number, prefixed by an “HTTP:” string.

1 [RETURN_BYTES] is the number of bytes returned by the request.
1 [MESSAGE] provides additional information about the log entry.

Web Publishing Engine log message examples

The following examples show the types of messages that may be included in the wpe.log file:
1 When the Web Publishing Engine starts and stops

2015-06-02 15:15:31 -0700 - - - - INFO - - FileMaker Server
Web Publishing Engine started.

2015-06-02 15:46:52 -0700 - - - - INFO - - FileMaker Server
Web Publishing Engine stopped.

1 Successful or failed XML query requests
2015-06-02 15:21:08 -0700 WPC_SERVER 192.168.100.101:0 jdoe XML
INFO 0 3964 "/fmi/xml/fmresultset.xml?-db=Contacts&-
lay=Contact_Details&-findall"

2015-06-02 15:26:31 -0700 WPC_SERVER 192.168.100.101:0 jdoe XML
ERROR 5 596 "/fmi/xml/fmresultset.xml?-db=Contacts&-
layout=Contact_Details&-findall"

1 Scripting errors
2015-06-02 17:33:12 -0700 WPC_SERVER 192.168.100.101:0 jdoe - ERROR
4 - Web Scripting Error: 4, File: "10b_MeetingsUpload", Script: "OnOpen",
Script Step: "Show Custom Dialog"

1 Changes to the Custom Web Publishing settings
2015-06-09 10:59:49 -0700 WPC_SERVER 192.168.100.101:0 jdoe - INFO
- - XML Web Publishing Engine is enabled.

Chapter 9 | Staging, testing, and monitoring a site 90
1 System errors
2015-06-02 15:30:42 -0700 WPC_SERVER 192.168.100.101:0 jdoe XML
ERROR - - Communication failed

Using the Web Server Module error log
If the web server is unable to connect to the Web Publishing Engine, the Web Server Module
generates a log file that records any errors with its operation. This file is called
web_server_module_log.txt and is located in the Logs folder in the FileMaker Server folder on the
web server host.

Using the Tomcat logs
When FileMaker Server has a problem caused by an internal web server error, you may find it
helpful to view the Tomcat logs. The Tomcat logs are located on the web server component of the
FileMaker Server deployment:
1 IIS (Windows): [drive]:\Program Files\FileMaker\FileMaker
Server\Admin\admin-master-tomcat\logs\
where [drive] is the primary drive from which the system is started.

1 Apache (OS X): /Library/FileMaker Server/Admin/admin-master-tomcat/logs/

Appendix A
Error codes for Custom Web Publishing

The Web Publishing Engine generates error codes for database and query string errors that may
occur during an XML data request.
This appendix lists the error codes known at the time this document was published. For a list of
updated error codes, see the FileMaker Knowledge Base (http://help.filemaker.com).

Error code numbers in XML format
The Web Publishing Engine generates an error code for databases published in XML format
whenever data is requested. This type of error code value is inserted at the beginning of the XML
document in the <error code> element for the fmresultset grammar, or in the
<ERRORCODE> element for the FMPXMLRESULT or FMPXMLLAYOUT grammars. An error code of 0
indicates that no error has occurred.
Here is an example of the database error code in the fmresultset grammar:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE fmresultset PUBLIC "-//FMI//DTD fmresultset//EN"
"/fmi/xml/fmresultset.dtd">

<fmresultset xmlns="http://www.filemaker.com/xml/fmresultset" version="1.0">

<error code="0"></error>

Here is an example of the database error code in the FMPXMLRESULT grammar:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE FMPXMLRESULT PUBLIC "-//FMI//DTD FMPXMLRESULT//EN"
"/fmi/xml/FMPXMLRESULT.dtd">

<fmpxmlresult xmlns="http://www.filemaker.com/fmpxmlresult">

<ERRORCODE>0</ERRORCODE>

It is up to you, as the developer of the Custom Web Publishing solution, to check the value of the
<error code> or <ERRORCODE> element and handle it appropriately. The Web Publishing
Engine does not handle database errors.

Error code numbers for FileMaker databases
For FileMaker Pro error codes, see FileMaker Pro Help:
http://www.filemaker.com/help/14/fmp/en/html/error_codes.html

http://help.filemaker.com
http://www.filemaker.com/help/14/fmp/en/html/error_codes.html

Index
A
access log files for web server, described 88
access privileges 14
accounts and privileges

enabling for Custom Web Publishing 13
Guest account 14
scripts 18

Add command 69
add() method 77
addSortRule() method 75
Admin Console 14, 26, 63
application log 88
ASCII characters, in XML documents 38
authentication of web users 13
auto-enter attribute 31
available scripts 49

B
Basic Authentication for web users 13

C
Change Password script 14
clearSortRules() method 75
client URL library 61
commands for queries. See query strings
commit() method 68
comparison of XML grammars 28
comparison operators for fields 51
Compound Find

command 77
example 78

compound find
query command 48
query parameter 53

connecting to a FileMaker database using PHP 68
container fields

how web users access data 18
progressive download 17
publishing contents of 15
URL syntax for accessing in XML solutions 27
with externally stored data 16
with referenced files 15

createRecord() method 68
creating a record

using PHP 68
using XML 48

cURL 61
Custom Web Publishing
access to solutions by web users 13
definition 9
enabling in a database 13
enabling in Web Publishing Engine 14
extended privilege for 13
Guest account 14
new features in 21
overview 9
plug-ins for web publishing solutions 18
requirements for 22
restricting IP address access in web server 14
scripts 20
using a static IP address 23
using scripts 18
with PHP 11
with XML 11, 24

Custom Web Publishing Engine (CWPE) 25

D
database error codes 29, 91
database layouts available 48
database object 68
databases, protecting when published 14
<datasource> element 30
date field 81
date representation 79
–db query parameter 49
–dbnames query command 46
Delete command 70
–delete query command 46
–delete.related query parameter 45
delete() method 69, 74
deleting a record 69
deleting portal records 45
document type definitions (DTDs) 29, 33
documentation 8
–dup query command 47
Duplicate command 69
duplicating a record 69
dynamic IP address 61

E
Edit command 69
–edit query command 47
editing a record 69
elements

database error code 29
in FMPXMLLAYOUT grammar 35
in FMPXMLRESULT grammar 33
in fmresultset grammar 30

enabling Custom Web Publishing in a database 13

93
encoding
URLs 28
XML data 29, 38

<error code> and <ERRORCODE> elements 91
errors

database error code elements 29
database error code numbers 91
described 91
handling 84
log files for web server 88

examples of
generated FMPXMLLAYOUT grammar 37
generated FMPXMLRESULT grammar 34
generated fmresultset grammar 32

existing value validation 81
export XML data 24
extended privilege for Custom Web Publishing 13
Extensible Markup Language (XML). See XML

F
field name query parameter (non-container) 50
field names, fully qualified syntax 44
–field query parameter (container) 50
<field-definition> element 31
–fieldname.op query parameter 51
fields

container 15
date 81
four-digit year 80
maximum number of characters 80
not empty 80
numeric only 80
related in PHP 72
related in XML 31, 45
time 81
time of day 81
timestamp 81

FileMaker API for PHP 11
manual installation 62
reference 66

FileMaker class 67
FileMaker class objects

database 68
definition 67
record 68
related set 72

FileMaker command objects
Add 69
Compound Find 77
Delete 70
Duplicate 69
Edit 69
Find 75, 76
Find All 76
Find Any 76

FileMaker Pro, contrast with Web Publishing Engine 24
FileMaker Server

documentation 8
FileMaker Server Admin Console 14, 26
FileMaker WebDirect
described 9

filtering portal field records 55
Find All command 76
Find Any command 76
Find command 76
Find command objects 75
–find query command 47
–findall query command 47
–findany query command 47
–findquery query command 48
fmphp keyword for enabling PHP publishing 13
FMPXMLLAYOUT grammar 24, 28, 35–37
FMPXMLRESULT grammar 24, 28, 33–34
fmresultset grammar 24, 28, 30–32
fmsadmin group 17
fmxml keyword for enabling XML publishing 13, 26
four-digit year field 80
four-digit-year attribute 31
fully qualified field name, syntax of 44

G
getContainerData() method 79
getContainerDataURL() method 79
getDatabase() method 72
getErrors() method 84
getFetchCount() method 79
getField() method 79
getFieldAsTimestamp() method 79
getFields() method 72, 79
getFoundSetCount() method 79
getLayout() method 72
getMessage() method 84
getName() method 72, 73
getRange() method 76
getRecords() method 79
getRelatedSet() method 73
getRelatedSets() method 72
getValueListsTwoFields() method 74
getValueListTwoFields() method 74
global fields

in field definition 31
syntax of 46

grammars for XML, described 28
Guest account

disabling 14
enabling 14
with Custom Web Publishing 14

H
handling errors 84
HTML forms for XML requests 26

I
import XML data 24

94
in range validation 81
installation of the FileMaker API for PHP 62
isError() method 84
isValidationError() method 82

K
keywords for enabling Custom Web Publishing 13, 26

L
Latin-1 encoding 65
–lay query parameter 40, 52
–lay.response query parameter 40, 52
–layoutnames query command 48
layouts

switching for an XML response 40
use in PHP 72

limiting portal field records 56
listFields() method 72
listLayouts() method 72
listRelatedSets() method 72
listScripts() method 70
listValueLists() method 72, 74
log files 86

described 87
Tomcat 90
web server access 88
web_server_module_log.txt 90

–lop query parameter 52

M
manual installation of the FileMaker API for PHP 62
–max query parameter 53
max-characters attribute 31
maximum number of characters field 80
max-repeat attribute 31
member of value list validation 81
<metadata> element 31
methods
add() 77
addSortRule() 75
clearSortRules() 75
commit() 68
createRecord() 68
delete() 69, 74
getContainerData() 79
getContainerDataURL() 79
getDatabase() 72
getErrors() 84
getFetchCount() 79
getField() 79
getFieldAsTimestamp() 79
getFields() 72, 79
getFoundSetCount() 79
getLayout() 72
getMessage() 84
getName() 72, 73
getRange() 76
getRecords() 79
getRelatedSet() 73
getRelatedSets() 72
getValueListsTwoFields() 74
getValueListTwoFields() 74
isError() 84
isValidationError() 82
listFields() 72
listLayouts() 72
listRelatedSets() 72
listScripts() 70
listValueLists() 72, 74
newAddCommand() 69
newCompoundFindCommand() 77
newDeleteCommand() 70
newDuplicateCommand() 69
newEditCommand() 69
newFindAllCommand() 76
newFindAnyCommand() 76
newFindCommand() 76
newFindRequest() 77
newPerformScriptCommand() 70
newRelatedRecord() 73
numErrors() 82, 84
setLogicalOperator() 75
setPreCommandScript() 70, 76
setPreSortScript() 71, 76
setProperty() 68
setRange() 76
setRelatedSetsFilters() 80
setResultsLayout() 72
setScript() 71, 76
validate() 81

MIME (Multipurpose Internet Mail Extensions) types 15
–modid query parameter 53
monitoring websites 87

N
name attribute 31
namespaces for XML 29

95
new features in Custom Web Publishing 21
–new query command 48
newAddCommand() method 69
newCompoundFindCommand() method 77
newDeleteCommand() method 70
newDuplicateCommand() method 69
newEditCommand() method 69
newFindAllCommand() method 76
newFindAnyCommand() method 76
newFindCommand() method 76
newFindRequest() method 77
newPerformScriptCommand() method 70
newRelatedRecord() method 73
non-empty field 80
not-empty attribute 31
numbers for database error codes 91
numeric only field 80
numeric-only attribute 31
numErrors() method 82, 84

O
online documentation 8
operators, comparison 51
order of XML request processing 40
OS X Server Admin 61
overview

Custom Web Publishing 9
steps for XML data access 26

overview of PHP publishing 64

P
parameters for queries. See query strings
passwords

Basic Authentication for web users 13
Change Password script 14
defining for Custom Web Publishing 13
no login password 14

PDFs 8
performing find requests 75
PHP

Custom Web Publishing, described 11
enabling in a database 13
summary of steps for publishing 64
supported version 62

PHP advantages 11
PHP version 61
plug-ins 18
portal field queries 55, 56
portals

adding records 44
deleting records 45
editing records 45
initial row 55
layout 55
number of records 55
sorting records 55
use in PHP 72
pre-validation
commands 80
date 81
fields 82
four-digit year 80
maximum number of characters 80
not empty 80
numeric only 80
records 82
time 81
time of day 81
timestamp 81

privilege set, assigning for Custom Web Publishing 13
processing a result set 79
processing a Web Publishing Engine request 10
progressive download 17
protecting published databases 14
publishing on the web

connecting to Internet or intranet 23
container field objects 15
database error codes 91
protecting databases 14
requirements for 22
using PHP 64
using XML 26

Q
–query query parameter 53
query strings

adding records to portals 44
commands and parameters 38, 42
editing records in portals 45
fully qualified field name, syntax of 44
global fields, syntax of 46
guidelines for 42
requesting XML data 38, 42

querying portal fields 46

R
–recid query parameter 55
record object 68
records

creating in PHP 68
creating in XML 48
deleting in PHP 69
deleting in XML 46
duplicating in PHP 69
duplicating in XML 47
editing in PHP 69
editing in XML 47
finding in PHP 75
finding in XML 47
skipping in XML 58

reference information 66
related set object 72
<relatedset-definition> element 31
–relatedsets.filter query parameter 55
–relatedsets.max query parameter 56

96
Re-Login script step 14
requests for XML data 26
requirements for Custom Web Publishing 22
result attribute 31
result set 79
<resultset> element 31
retrieving

available script names 49
layout information 49
layout names 48

S
SAT. See FileMaker Server Admin Console
–script query parameter 56
script triggers 20
–script.param query parameter 56
–script.prefind query parameter 57
–script.prefind.param query parameter 57
–script.presort query parameter 57
–script.presort.param query parameter 58
–scriptnames query command 49
scripts

accounts and privileges 18
in Custom Web Publishing 18
tips and considerations 18
use in PHP 70
use in XML requests 26

scripts steps
Change Password 14
Re-Login 14

security
accounts and passwords 14
documentation 10
guidelines for protecting published databases 14
restricting access from IP addresses 14

Server Admin tool. See OS X Server Admin
server requirements 60
setLogicalOperator() method 75
setPreCommandScript() method 70, 76
setPreSortScript() method 71, 76
setProperty() method 68
setRange() method 76
setRelatedSetsFilters() method 80
setResultsLayout() method 72
setScript() method 71, 76
–skip query parameter 58
–sortfield query parameter 58
sorting portal field records 55
–sortorder query parameter 59
specifying layout when requesting XML data 40
SSL (Secure Sockets Layer) encryption 15
static IP address 61
static publishing, described 9
stylesheets, testing 86
summary of steps for XML data access 26
switching layouts for an XML response 40
T
testing

websites 86
XML output 87

text encoding
generated XML data 29
URLs 28

time field 81
time of day field 81
time-of-day attribute 31
timestamp field 79, 81
Tomcat, using log files 90
troubleshooting

Custom Web Publishing websites 86
XML document access 41

type attribute 31

U
UAC. See FileMaker Server Admin Console
Unicode

characters used in XML parsers 38
data format returned by FileMaker Server 65

unique value validation 81
Unix timestamp 79
URL syntax for

container objects in XML solutions 27
XML requests 26

URL text encoding 28
user names

Basic Authentication for web users 13
defining for Custom Web Publishing 13

UTF-8 (Unicode Transformation 8 Bit) format 28, 38
UTF-8 encoding 65

V
validate by calculation 81
validate() method 81
validation

commands 80
date 81
fields 82
four-digit year 80
maximum number of characters 80
not empty 80
numeric only 80
records 82
time 81
time of day 81
timestamp 81

value lists, use in PHP 74
–view query command 49

W
web browser’s role in XML requests 25
Web folder, copying container field objects 15
Web Publishing Core illustrated 25

97
Web Publishing Engine
Admin Console 26
application log 88
benefits of 21
described 10
generated error codes 91
generating XML data 25
generating XML documents 26
request processing 10

web server
log files 88
MIME type support 15
role in XML requests 25

web users
accessing protected databases 13
requirements for accessing Custom Web Publishing

solutions 22
using container field data 18

web_server_module_log.txt log file 90
websites

creating with Web Publishing Engine 21
FileMaker support pages 8
monitoring 87
testing 86

X
XML

advantages 11
Custom Web Publishing, described 11
described 24
document type definitions (DTDs) 29, 30, 33
enabling in a database 13
encoded using UTF-8 format 29, 38
FMPXMLLAYOUT grammar 35
FMPXMLRESULT grammar 33
fmresultset grammar 30

<datasource> element 30
<field-definition> element 31
<metadata> element 31
<relatedset-definition> element 31
<resultset> element 31

generating XML data from request 25
grammars compared 28
namespaces for 29
order of request processing 40
parsers 26, 38
query strings 38, 42
request, specifying layout 40
requesting data 26
response, switching layout 40
summary of steps for accessing XML data 26
troubleshooting access to XML documents 41
URL text encoding 28
XML 1.0 specification 24

<xsl:stylesheet> element 87
<xsl:template> element 87

	Contents
	About this guide
	Where to find FileMaker documentation

	Chapter 1 Introducing Custom Web Publishing
	About the Web Publishing Engine
	How a Web Publishing Engine request is processed

	Custom Web Publishing with XML
	Custom Web Publishing with PHP
	Comparing XML to PHP
	Reasons to choose XML
	Reasons to choose PHP

	Chapter 2 Preparing databases for Custom Web Publishing
	Enabling Custom Web Publishing in a database
	Accessing a protected database
	Protecting your published databases
	Web server support for Internet media types (MIME)
	About publishing the contents of container fields on the web
	Container field objects embedded in a database
	Container fields with stored file references
	Container fields with externally stored data
	Container fields and progressive download
	How web users view container field data

	FileMaker scripts and Custom Web Publishing
	Script tips and considerations
	Script behavior in Custom Web Publishing solutions
	Script triggers and Custom Web Publishing solutions

	Chapter 3 About Custom Web Publishing with XML
	Creating dynamic websites with the Web Publishing Engine
	Key features in Custom Web Publishing with XML
	Web publishing requirements
	What is required to publish a database using Custom Web Publishing
	What web users need to access a Custom Web Publishing solution
	Connecting to the Internet or an intranet

	Where to go from here

	Chapter 4 Accessing XML data with the Web Publishing Engine
	Using Custom Web Publishing with XML
	Differences between the Web Publishing Engine and FileMaker Pro XML Import/Export
	How the Web Publishing Engine generates XML data from a request

	General process for accessing XML data from the Web Publishing Engine
	About the URL syntax for XML data and container objects
	About the URL syntax for XML data
	About the URL syntax for FileMaker container objects in XML solutions
	About URL text encoding

	Accessing XML data via the Web Publishing Engine
	About namespaces for FileMaker XML
	About FileMaker database error codes
	Retrieving the document type definitions for the FileMaker grammars

	Using the fmresultset grammar
	Description of elements in the fmresultset grammar
	Example of XML data in the fmresultset grammar

	Using other FileMaker XML grammars
	Description of elements in the FMPXMLRESULT grammar
	Example of XML data in the FMPXMLRESULT grammar
	Description of elements in the FMPXMLLAYOUT grammar
	Example of XML data in the FMPXMLLAYOUT grammar

	About UTF-8 encoded data
	Using FileMaker query strings to request XML data
	Switching layouts for an XML response
	Understanding how an XML request is processed
	Troubleshooting XML document access

	Chapter 5 Valid names used in XML query strings
	About the query commands and parameters
	Guidelines for using query commands and parameters
	Query command parsing
	About the syntax for a fully qualified field name
	Using query commands with portal fields
	About the syntax for specifying a global field

	Query command reference
	–dbnames (Database names) query command
	–delete (Delete record) query command
	–dup (Duplicate record) query command
	–edit (Edit record) query command
	–find, –findall, or –findany (Find records) query commands
	–findquery (Compound find) query command
	–layoutnames (Layout names) query command
	–new (New record) query command
	–scriptnames (Script names) query command
	–view (View layout information) query command

	Query parameter reference
	–db (Database name) query parameter
	–delete.related (Portal records delete) query parameter
	–field (Container field name) query parameter
	fieldname (Non-container field name) query parameter
	fieldname.op (Comparison operator) query parameter
	–lay (Layout) query parameter
	–lay.response (Switch layout for response) query parameter
	–lop (Logical operator) query parameter
	–max (Maximum records) query parameter
	–modid (Modification ID) query parameter
	–query (Compound find request) query parameter
	–recid (Record ID) query parameter
	–relatedsets.filter (Filter portal records) query parameter
	–relatedsets.max (Limit portal records) query parameter
	–script (Script) query parameter
	–script.param (Pass parameter to Script) query parameter
	–script.prefind (Script before Find) query parameter
	–script.prefind.param (Pass parameter to Script before Find) query parameter
	–script.presort (Script before Sort) query parameter
	–script.presort.param (Pass parameter to Script before Sort) query parameter
	–skip (Skip records) query parameter
	–sortfield (Sort field) query parameter
	–sortorder (Sort order) query parameter

	Chapter 6 About Custom Web Publishing with PHP
	Key features in Custom Web Publishing with PHP
	Custom Web Publishing requirements
	What is required to publish a database using Custom Web Publishing
	What web users need to access a Custom Web Publishing solution
	Connecting to the Internet or an intranet

	Manually installing the FileMaker API for PHP
	Where to go from here

	Chapter 7 Overview of Custom Web Publishing with PHP
	How the Web Publishing Engine works with PHP solutions
	General steps for Custom Web Publishing with PHP

	Chapter 8 Using the FileMaker API for PHP
	Where to get additional information
	FileMaker API for PHP Reference
	FileMaker API for PHP support

	Using the FileMaker class
	FileMaker class objects
	FileMaker command objects

	Connecting to a FileMaker database
	Working with records
	Creating a record
	Duplicating a record
	Editing a record
	Deleting a record

	Running FileMaker scripts
	Obtaining the list of available scripts
	Running a FileMaker script
	Running a script before executing a command
	Running a script before sorting a result set
	Running a script after the result set is generated
	Script execution order

	Working with FileMaker layouts
	Using portals
	Listing the portals defined on a specific layout
	Obtaining portal names for a specific result object
	Obtaining information about portals for a specific layout
	Obtaining information for a specific portal
	Obtaining the table name for a portal
	Obtaining the portal records for a specific record
	Creating a new record in a portal
	Deleting a record from a portal

	Using value lists
	Obtaining the names of all value lists for a specific layout
	Obtaining an array of all value lists for a specific layout
	Obtaining the values for a named value list

	Performing find requests
	Using the Find All command
	Using the Find Any command
	Using the Find command
	Using a Compound Find command
	Processing the records in a result set
	Filtering portal rows returned by find requests

	Pre-validating commands, records, and fields
	Pre-validating records in a command
	Pre-validating records
	Pre-validating fields
	Processing the validation errors

	Handling errors

	Chapter 9 Staging, testing, and monitoring a site
	Staging a Custom Web Publishing site
	Testing a Custom Web Publishing site
	Examples of stylesheets for testing XML output
	Monitoring your site
	Using the web server access and error logs
	Using the Web Publishing Engine log
	Using the Web Server Module error log
	Using the Tomcat logs

	Error code numbers in XML format
	Error code numbers for FileMaker databases

